Ricci-Curbastro Condition for Maximal Surfaces in the Lorentz-Minkowski Space

被引:0
|
作者
Rosa M. B. Chaves
Bárbara C. Valério
José Antonio M. Vilhena
机构
[1] Universidade de São Paulo,Instituto de Matemática e Estatística
[2] Universidade Federal do Pará,Faculdade de Matemática
来源
Results in Mathematics | 2017年 / 71卷
关键词
Ricci-Curbastro; complete spacelike surfaces; maximal surfaces; Lorentz-Minkowski space; 53C42; 53A10;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by a classical result due to Ricci-Curbastro that gives necessary and sufficient conditions for a metric to be realizable on a minimal surface in the euclidean space, in this paper we study the same problem for maximal surfaces in the Lorentz-Minkowski space.
引用
收藏
页码:1373 / 1388
页数:15
相关论文
共 50 条
  • [31] The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz-Minkowski space
    Fernández, I
    López, FJ
    Souam, R
    MATHEMATISCHE ANNALEN, 2005, 332 (03) : 605 - 643
  • [32] Space-like surfaces with free boundary in the Lorentz-Minkowski space
    Lopez, R.
    Pyo, J.
    CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (03)
  • [33] Loxodromes on twisted surfaces in Lorentz-Minkowski 3-space
    Kazan, Ahmet
    Altm, Mustafa
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (04)
  • [34] Solutions of the Bjorling problem for timelike surfaces in the Lorentz-Minkowski space
    Kaya, Seher
    Lopez, Rafael
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (05) : 2186 - 2201
  • [35] Translation Surfaces of the Third Fundamental Form in Lorentz-Minkowski Space
    Senoussi, Bendehiba
    Bekkar, Mohammed
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2022, 17 (01): : 165 - 176
  • [36] Space-like maximal surfaces containing entire null lines in Lorentz-Minkowski 3-space
    Akamine, Shintaro
    Umehara, Masaaki
    Yamada, Kotaro
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2019, 95 (09) : 97 - 102
  • [37] Fold singularities on spacelike CMC surfaces in Lorentz-Minkowski space
    Honda, Atsufumi
    Koiso, Miyuki
    Saji, Kentaro
    HOKKAIDO MATHEMATICAL JOURNAL, 2018, 47 (02) : 245 - 267
  • [38] ANALYTIC EXTENSION OF JORGE-MEEKS TYPE MAXIMAL SURFACES IN LORENTZ-MINKOWSKI 3-SPACE
    Fujimori, Shoichi
    Kawakami, Yu
    Kokubu, Masatoshi
    Rossman, Wayne
    Umehara, Masaaki
    Yamada, Kotaro
    OSAKA JOURNAL OF MATHEMATICS, 2017, 54 (02) : 249 - 272
  • [39] The moduli space of embedded singly periodic maximal surfaces with isolated singularities in the Lorentz-Minkowski space L3
    Fernandez, Isabel
    Lopez, Francisco J.
    Souam, Rabah
    MANUSCRIPTA MATHEMATICA, 2007, 122 (04) : 439 - 463
  • [40] Isometric Generalized Maximal Surfaces in Lorentz–Minkowski Space
    Henrique Araújo
    Results in Mathematics, 2009, 56