A construction of maximally recoverable codes

被引:0
|
作者
Alexander Barg
Zitan Chen
Itzhak Tamo
机构
[1] University of Maryland,Department of ECE and Institute for Systems Research
[2] Inst. for Probl. Inform. Trans.,School of Science and Engineering and Future Network of Intelligence Institute
[3] The Chinese University of Hong Kong,Department of EE
[4] Tel Aviv University,Systems
来源
关键词
Distributed storage; Codes with local recovery; Maximally recoverable codes; 94B60;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a family of linear maximally recoverable codes with locality r and dimension r+1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r+1.$$\end{document} For codes of length n with r≈nα,0≤α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\approx n^\alpha , 0\le \alpha \le 1$$\end{document} the code alphabet is of the order n1+3α,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{1+3\alpha },$$\end{document} which improves upon the previously known constructions of maximally recoverable codes.
引用
收藏
页码:939 / 945
页数:6
相关论文
共 50 条
  • [31] Explicit Construction of Optimal Locally Recoverable Codes of Distance 5 and 6 via Binary Constant Weight Codes
    Jin, Lingfei
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) : 4658 - 4663
  • [32] Locally Recoverable Codes on Surfaces
    Salgado, Cecilia
    Varilly-Alvarado, Anthony
    Voloch, Jose Felipe
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (09) : 5765 - 5777
  • [33] Capacity of Locally Recoverable Codes
    Mazumdar, Arya
    [J]. 2018 IEEE INFORMATION THEORY WORKSHOP (ITW), 2018, : 350 - 354
  • [34] Improved Maximally Recoverable LRCs Using Skew Polynomials
    Gopi, Sivakanth
    Guruswami, Venkatesan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (11) : 7198 - 7214
  • [35] Bounds on the Parameters of Locally Recoverable Codes
    Tamo, Itzhak
    Barg, Alexander
    Frolov, Alexey
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (06) : 3070 - 3083
  • [36] A Family of Optimal Locally Recoverable Codes
    Tamo, Itzhak
    Barg, Alexander
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 686 - 690
  • [37] Bounds on the Size of Locally Recoverable Codes
    Cadambe, Viveck R.
    Mazumdar, Arya
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) : 5787 - 5794
  • [38] Locally Recoverable Codes on Algebraic Curves
    Barg, Alexander
    Tamo, Itzhak
    Vladut, Serge
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (08) : 4928 - 4939
  • [39] A Family of Optimal Locally Recoverable Codes
    Tamo, Itzhak
    Barg, Alexander
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (08) : 4661 - 4676
  • [40] Number theoretical locally recoverable codes
    Ferraguti, Andrea
    Goldfeld, Dorian
    Micheli, Giacomo
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (07)