A construction of maximally recoverable codes

被引:0
|
作者
Alexander Barg
Zitan Chen
Itzhak Tamo
机构
[1] University of Maryland,Department of ECE and Institute for Systems Research
[2] Inst. for Probl. Inform. Trans.,School of Science and Engineering and Future Network of Intelligence Institute
[3] The Chinese University of Hong Kong,Department of EE
[4] Tel Aviv University,Systems
来源
关键词
Distributed storage; Codes with local recovery; Maximally recoverable codes; 94B60;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a family of linear maximally recoverable codes with locality r and dimension r+1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r+1.$$\end{document} For codes of length n with r≈nα,0≤α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\approx n^\alpha , 0\le \alpha \le 1$$\end{document} the code alphabet is of the order n1+3α,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{1+3\alpha },$$\end{document} which improves upon the previously known constructions of maximally recoverable codes.
引用
收藏
页码:939 / 945
页数:6
相关论文
共 50 条
  • [1] A construction of maximally recoverable codes
    Barg, Alexander
    Chen, Zitan
    Tamo, Itzhak
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (04) : 939 - 945
  • [2] On Partial Maximally-Recoverable and Maximally-Recoverable Codes
    Balaji, S. B.
    Kumar, P. Vijay
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1881 - 1885
  • [3] A Construction of Maximally Recoverable Codes With Order-Optimal Field Size
    Cai, Han
    Miao, Ying
    Schwartz, Moshe
    Tang, Xiaohu
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (01) : 204 - 212
  • [4] Maximally Recoverable Codes: the Bounded Case
    Gandikota, Venkata
    Grigorescu, Elena
    Thomas, Clayton
    Zhu, Minshen
    [J]. 2017 55TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2017, : 1115 - 1122
  • [5] Explicit Maximally Recoverable Codes With Locality
    Gopalan, Parikshit
    Huang, Cheng
    Jenkins, Bob
    Yekhanin, Sergey
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (09) : 5245 - 5256
  • [6] Maximally Recoverable Codes with Hierarchical Locality
    Nair, Aaditya M.
    Lalitha, V.
    [J]. 2019 25TH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2019,
  • [7] On Maximally Recoverable Codes for Product Topologies
    Shivakrishna, D.
    Rameshwar, V. Arvind
    Lalitha, V.
    Sasidharan, Birenjith
    [J]. 2018 TWENTY FOURTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2018,
  • [8] Uniform Minors in Maximally Recoverable Codes
    Grezet, Matthias
    Westerback, Thomas
    Freij-Hollanti, Ragnar
    Hollanti, Camilla
    [J]. IEEE COMMUNICATIONS LETTERS, 2019, 23 (08) : 1297 - 1300
  • [9] Properties of Maximally Recoverable Product Codes and Higher Order MDS Codes
    Shivakrishna, D.
    Lalitha, V
    [J]. 2022 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2022, : 233 - 238
  • [10] Maximally Recoverable Codes for Grid-like Topologies
    Gopalan, Parikshit
    Hu, Guangda
    Kopparty, Swastik
    Saraf, Shubhangi
    Wang, Carol
    Yekhanin, Sergey
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 2092 - 2108