A counterexample to Zarrin’s conjecture on sizes of finite nonabelian simple groups in relation to involution sizes

被引:0
|
作者
Chimere S. Anabanti
机构
[1] University of Nigeria,Department of Mathematics
[2] Nsukka (UNN),undefined
来源
Archiv der Mathematik | 2019年 / 112卷
关键词
Finite simple groups; Nonabelian; Involution; Element order; 20D60; 20D06;
D O I
暂无
中图分类号
学科分类号
摘要
Let In(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_n(G)$$\end{document} denote the number of elements of order n in a finite group G. In 1979, Herzog (Proc Am Math Soc 77:313–314, 1979) conjectured that two finite simple groups containing the same number of involutions have the same order. In a 2018 paper (Arch Math 111:349–351, 2018), Zarrin disproved Herzog’s conjecture with a counterexample. Then he conjectured that “if S is a non-abelian simple group and G a group such that I2(G)=I2(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_2(G)=I_2(S)$$\end{document} and Ip(G)=Ip(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_p(G) =I_p(S)$$\end{document} for some odd prime divisor p, then |G|=|S|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|G|=|S|$$\end{document}”. In this paper, we give more counterexamples to Herzog’s conjecture. Moreover, we disprove Zarrin’s conjecture.
引用
收藏
页码:225 / 226
页数:1
相关论文
共 50 条