Let In(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$I_n(G)$$\end{document} denote the number of elements of order n in a finite group G. In 1979, Herzog (Proc Am Math Soc 77:313–314, 1979) conjectured that two finite simple groups containing the same number of involutions have the same order. In a 2018 paper (Arch Math 111:349–351, 2018), Zarrin disproved Herzog’s conjecture with a counterexample. Then he conjectured that “if S is a non-abelian simple group and G a group such that I2(G)=I2(S)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$I_2(G)=I_2(S)$$\end{document} and Ip(G)=Ip(S)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$I_p(G) =I_p(S)$$\end{document} for some odd prime divisor p, then |G|=|S|\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$|G|=|S|$$\end{document}”. In this paper, we give more counterexamples to Herzog’s conjecture. Moreover, we disprove Zarrin’s conjecture.