Least Square Support Vector Machine Applied to Slope Reliability Analysis

被引:33
|
作者
Samui P. [1 ]
Lansivaara T. [2 ]
Bhatt M.R. [3 ]
机构
[1] Centre for Disaster Mitigation and Management, VIT University, Vellore
[2] Department of Civil Engineering, Tampere University of Technology, Tampere
[3] School of Mechanical and Building Science, VIT University, Vellore
来源
Geotech. Geol. Eng. | 2013年 / 4卷 / 1329-1334期
关键词
First order second moment (FOSM) method; Implicit performance function; Least square support vector machine; Slope reliability;
D O I
10.1007/s10706-013-9654-2
中图分类号
学科分类号
摘要
This paper investigates the feasibility of Least square support vector machine (LSSVM) model to cope the problem of implicit performance function during first order second moment (FOSM) method based slope reliability analysis. LSSVM is firmly based on the theory of statistical learning. In LSSVM, Vapnik's ε -insensitive loss function has been replaced by a cost function which corresponds to a form of ridge regression. Here, LSSVM has been used as a regression technique to approximate implicit performance functions. A slope example has been presented for illustrating the applicability of LSSVM based FOSM method. The developed LSSVM based FOSM has been compared with the artificial neural network (ANN) and least square method. The result shows that the approximation of LSSVM can be used in the FOSM method for slope reliability analysis. © 2013 Springer Science+Business Media Dordrecht.
引用
收藏
页码:1329 / 1334
页数:5
相关论文
共 50 条
  • [31] A Programming by Demonstration with Least Square Support Vector Machine for Manipulators
    Zhao, Jingdong
    Li, Chongyang
    Jiang, Zainan
    Liu, Hong
    INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2015), PT III, 2015, 9246 : 126 - 137
  • [32] Scalable Least Square Twin Support Vector Machine Learning
    Prasad, Bakshi Rohit
    Agarwal, Sonali
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, DAWAK 2019, 2019, 11708 : 239 - 249
  • [33] Forecasting the runoff using least square support vector machine
    Feng Lijun
    Li Shuquan
    PROCEEDINGS OF THE 2007 INTERNATIONAL CONFERENCE ON AGRICULTURE ENGINEERING, 2007, : 884 - 889
  • [34] An Optimal Sparseness Approach for Least Square Support Vector Machine
    Luo, Jia
    Chen, Shihe
    Wu, Le
    Zhang, Shirong
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 3621 - 3626
  • [35] Credit risk evaluation with least square support vector machine
    Lai, Kin Keung
    Yu, Lean
    Zhou, Ligang
    Wang, Shouyang
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2006, 4062 : 490 - 495
  • [36] Structural least square twin support vector machine for classification
    Xu, Yitian
    Pan, Xianli
    Zhou, Zhijian
    Yang, Zhiji
    Zhang, Yuqun
    APPLIED INTELLIGENCE, 2015, 42 (03) : 527 - 536
  • [37] Runoff simulation Based on Least Square Support Vector Machine
    Liu Jun Ping
    Zhou Jun Jie
    Zou Xian Bai
    PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON CIVIL, ARCHITECTURAL AND HYDRAULIC ENGINEERING (ICCAHE 2016), 2016, 95 : 885 - 890
  • [38] Text classification: A least square support vector machine approach
    Mitra, Vikramjit
    Wang, Chia-Jiu
    Banerjee, Satarupa
    APPLIED SOFT COMPUTING, 2007, 7 (03) : 908 - 914
  • [39] Relation between a support vector machine and the least square method
    Yan, Hui
    Zhang, Xuegong
    Li, Yanda
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2001, 41 (09): : 77 - 80
  • [40] Structural least square twin support vector machine for classification
    Yitian Xu
    Xianli Pan
    Zhijian Zhou
    Zhiji Yang
    Yuqun Zhang
    Applied Intelligence, 2015, 42 : 527 - 536