Some Martingales Associated With Multivariate Bessel Processes

被引:0
|
作者
M. Kornyik
M. Voit
J. Woerner
机构
[1] Eötvös Loránd University,Department of Probability Theory and Statistics
[2] Wigner Research Centre for Physics,Department of Quantum Optics and Quantum Information
[3] Fakultät Mathematik,undefined
[4] Technische Universität Dortmund,undefined
来源
Acta Mathematica Hungarica | 2021年 / 163卷
关键词
Interacting particle system; Calogero–Moser–Sutherland model; zeros of Hermite polynomials; zeros of Laguerre polynomials; -Hermite ensemble; -Laguerre ensemble; 60F15; 60F05; 60J60; 60B20; 60H20; 70F10; 82C22; 33C67;
D O I
暂无
中图分类号
学科分类号
摘要
We study Bessel processes on Weyl chambers of types A and B on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^N$$\end{document}. Using elementary symmetric functions, we present several space-timeharmonic functions and thus martingales for these processes (Xt)t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_t)_{t\ge0}$$\end{document}which are independent from one parameter of these processes. As a consequence, pt(y):=E(∏i=1N(y-Xti))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_t(y):= \mathbb{E}(\prod_{i=1}^N (y-X_t^i))$$\end{document} can be expressed via classical orthogonal polynomials. Such formulas on characteristic polynomials admit interpretations in random matrix theory where they are partially known by Diaconis, Forrester, and Gamburd.
引用
收藏
页码:194 / 212
页数:18
相关论文
共 50 条