We study Bessel processes on Weyl chambers of types A and B
on RN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{R}^N$$\end{document}. Using elementary symmetric functions, we present several space-timeharmonic
functions and thus martingales for these processes (Xt)t≥0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(X_t)_{t\ge0}$$\end{document}which are
independent from one parameter of these processes. As a consequence, pt(y):=E(∏i=1N(y-Xti))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p_t(y):= \mathbb{E}(\prod_{i=1}^N (y-X_t^i))$$\end{document} can be expressed via classical orthogonal polynomials. Such
formulas on characteristic polynomials admit interpretations in random matrix
theory where they are partially known by Diaconis, Forrester, and Gamburd.