The Free Energy of NOAA Solar Active Region AR 11029

被引:0
|
作者
S. A. Gilchrist
M. S. Wheatland
K. D. Leka
机构
[1] The University of Sydney,Sydney Institute for Astronomy, School of Physics
[2] NorthWest Research Associates,CoRA Division
来源
Solar Physics | 2012年 / 276卷
关键词
Active regions; Corona; Magnetic fields;
D O I
暂无
中图分类号
学科分类号
摘要
The NOAA active region (AR) 11029 was a small but highly active sunspot region which produced 73 GOES soft X-ray flares during its transit of the disk in late October 2009. The flares appear to show a departure from the well-known power law frequency-size distribution. Specifically, too few GOES C-class and no M-class flares were observed by comparison with a power law distribution (Wheatland, Astrophys. J.710, 1324, 2010). This was conjectured to be due to the region having insufficient magnetic energy to power the missing large events. We construct nonlinear force-free extrapolations of the coronal magnetic field of AR 11029 using data taken on 24 October by the SOLIS Vector SpectroMagnetograph (SOLIS/VSM) and data taken on 27 October by the Hinode Solar Optical Telescope SpectroPolarimeter (Hinode/SP). Force-free modeling with photospheric magnetogram data encounters problems, because the magnetogram data are inconsistent with a force-free model. We employ a recently developed “self-consistency” procedure which addresses this problem and accommodates uncertainties in the boundary data (Wheatland and Régnier, Astrophys. J.700, L88, 2009). We calculate the total energy and free energy of the self-consistent solution, which provides a model for the coronal magnetic field of the active region. The free energy of the region was found to be ≈ 4×1029 erg on 24 October and ≈ 7×1031 erg on 27 October. An order of magnitude scaling between RHESSI non-thermal energy and GOES peak X-ray flux is established from a sample of flares from the literature and is used to estimate flare energies from the observed GOES peak X-ray flux. Based on the scaling, we conclude that the estimated free energy of AR 11029 on 27 October when the flaring rate peaked was sufficient to power M-class or X-class flares; hence, the modeling does not appear to support the hypothesis that the absence of large flares is due to the region having limited energy.
引用
收藏
页码:133 / 160
页数:27
相关论文
共 50 条
  • [31] Formation of a Flare-Productive Active Region: Observation and Numerical Simulation of NOAA AR 11158
    S. Toriumi
    Y. Iida
    K. Kusano
    Y. Bamba
    S. Imada
    Solar Physics, 2014, 289 : 3351 - 3369
  • [32] Formation of a Flare-Productive Active Region: Observation and Numerical Simulation of NOAA AR 11158
    Toriumi, S.
    Iida, Y.
    Kusano, K.
    Bamba, Y.
    Imada, S.
    SOLAR PHYSICS, 2014, 289 (09) : 3351 - 3369
  • [33] Recurring Homologous Solar Eruptions in NOAA AR 11429
    Dhakal, Suman K.
    Zhang, Jie
    Vemareddy, Panditi
    Karna, Nishu
    ASTROPHYSICAL JOURNAL, 2020, 901 (01):
  • [34] Ejection during the solar flare in NOAA 8739 active region on 26 October 1999
    Rudawy, P
    Berlicki, A
    Siarkowski, M
    Kasiniak, K
    HEATING AND ENERGETICS OF THE SOLAR CORONA AND SOLAR WIND, 2002, 30 (03): : 611 - 616
  • [35] Sunspot Rotation and the M-Class Flare in Solar Active Region NOAA 11158
    Li, Alexander
    Liu, Yang
    SOLAR PHYSICS, 2015, 290 (08) : 2199 - 2209
  • [36] Sunspot Rotation and the M-Class Flare in Solar Active Region NOAA 11158
    Alexander Li
    Yang Liu
    Solar Physics, 2015, 290 : 2199 - 2209
  • [37] Characteristics of SEP Events and Their Solar Origin During the Evolution of Active Region NOAA 10069
    Kashapova, L. K.
    Miteva, R.
    Myagkova, I. N.
    Bogomolov, A. V.
    SOLAR PHYSICS, 2019, 294 (01)
  • [38] Characteristics of SEP Events and Their Solar Origin During the Evolution of Active Region NOAA 10069
    L. K. Kashapova
    R. Miteva
    I. N. Myagkova
    A. V. Bogomolov
    Solar Physics, 2019, 294
  • [39] PHOTOSPHERIC ELECTRIC FIELDS AND ENERGY FLUXES IN THE ERUPTIVE ACTIVE REGION NOAA 11158
    Kazachenko, Maria D.
    Fisher, George H.
    Welsch, Brian T.
    Liu, Yang
    Sun, Xudong
    ASTROPHYSICAL JOURNAL, 2015, 811 (01):
  • [40] Non-constant-α force-free field of active region NOAA 8210
    Régnier, S
    Amari, T
    Canfield, RC
    SOLMAG 2002: PROCEEDINGS OF THE MAGNETIC COUPLING OF THE SOLAR ATMOSPHERE EUROCONFERENCE AND IAU COLLOQUIUM 188, 2002, 505 : 65 - 68