A comparative note on the relaxation algorithms for the linear semi-infinite feasibility problem

被引:0
|
作者
A. Ferrer
M. A. Goberna
E. González-Gutiérrez
M. I. Todorov
机构
[1] Universitat Politècnica de Catalunya,Departament de Matemàtica Aplicada I
[2] Alicante University,Department of Statistics and Operations Research
[3] Polytechnic University of Tulancingo,School of Engineering
[4] UDLAP,Department of Physics and Mathematics
来源
关键词
Linear semi-infinite systems; Feasibility problem; Relaxation method; Cutting angle method;
D O I
暂无
中图分类号
学科分类号
摘要
The problem (LFP) of finding a feasible solution to a given linear semi-infinite system arises in different contexts. This paper provides an empirical comparative study of relaxation algorithms for (LFP). In this study we consider, together with the classical algorithm, implemented with different values of the fixed parameter (the step size), a new relaxation algorithm with random parameter which outperforms the classical one in most test problems whatever fixed parameter is taken. This new algorithm converges geometrically to a feasible solution under mild conditions. The relaxation algorithms under comparison have been implemented using the extended cutting angle method for solving the global optimization subproblems.
引用
收藏
页码:587 / 612
页数:25
相关论文
共 50 条
  • [31] A generic result in linear semi-infinite optimization
    Goberna, MA
    López, MA
    Todorov, MI
    APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 48 (03): : 181 - 193
  • [32] CALMNESS MODULUS OF LINEAR SEMI-INFINITE PROGRAMS
    Canovas, M. J.
    Kruger, A. Y.
    Lopez, M. A.
    Parra, J.
    Thera, M. A.
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (01) : 29 - 48
  • [33] Inverse optimization in semi-infinite linear programs
    Ghate, Archis
    OPERATIONS RESEARCH LETTERS, 2020, 48 (03) : 278 - 285
  • [34] On stable uniqueness in linear semi-infinite optimization
    M. A. Goberna
    M. I. Todorov
    V. N. Vera de Serio
    Journal of Global Optimization, 2012, 53 : 347 - 361
  • [35] Duality for inexact semi-infinite linear programming
    Gómez, JA
    Bosch, PJ
    Amaya, J
    OPTIMIZATION, 2005, 54 (01) : 1 - 25
  • [36] On stable uniqueness in linear semi-infinite optimization
    Goberna, M. A.
    Todorov, M. I.
    Vera de Serio, V. N.
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 53 (02) : 347 - 361
  • [37] A LADDER METHOD FOR LINEAR SEMI-INFINITE PROGRAMMING
    Liu, Yanqun
    Ding, Ming-Fang
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2014, 10 (02) : 397 - 412
  • [38] DUALITY IN SEMI-INFINITE LINEAR-PROGRAMMING
    DUFFIN, RJ
    JEROSLOW, RG
    KARLOVITZ, LA
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1983, 215 : 50 - 62
  • [39] Recent contributions to linear semi-infinite optimization
    Goberna, M. A.
    Lopez, M. A.
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2017, 15 (03): : 221 - 264
  • [40] SEMI-INFINITE LINEAR REGRESSION AND ITS APPLICATIONS
    Shustin, Paz Fink
    Avron, Haim
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2022, 43 (01) : 479 - 511