Diophantine approximation with mixed powers of primes

被引:0
|
作者
Yuhui Liu
机构
[1] Jiangnan University,School of Science
来源
The Ramanujan Journal | 2021年 / 56卷
关键词
Diophantine inequality; Prime; Davenport–Heilbronn method; Exceptional set; 11D75; 11P32;
D O I
暂无
中图分类号
学科分类号
摘要
Let k be a positive integer with k≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 5$$\end{document}, λ1,λ2,λ3,λ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1, \lambda _2, \lambda _3, \lambda _4$$\end{document} be nonzero real numbers, not all of the same sign, with λ1/λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1/\lambda _2$$\end{document} irrational and algebraic. Suppose that V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {V}}$$\end{document} is a well-spaced sequence and δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta >0$$\end{document}. By E4k(V,X,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{4k}({\mathcal {V}}, X, \delta )$$\end{document}, we denote the number of v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in {\mathcal {V}}$$\end{document} with v≤X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \le X$$\end{document} for which |λ1p12+λ2p22+λ3p34+λ4p4k-v|<v-δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |\lambda _1 p_1^2 + \lambda _2 p_2^2+ \lambda _3 p_3^4+ \lambda _4 p_4^k - v| < v^{-\delta } \end{aligned}$$\end{document}has no solution in primes p1,p2,p3,p4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3,p_4$$\end{document}. In this paper, it is proved that E4k(V,X,δ)≪X1-σ(k)+2δ+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{4k}({\mathcal {V}}, X, \delta ) \ll X^{1-\sigma (k)+2\delta +\varepsilon }$$\end{document}, where σ(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (k)$$\end{document} relies on k. This result constitutes a refinement upon that of Qu and Zeng (Diophantine approximation with prime variables and mixed powers. Ramanujan J 52:625–639, 2020).
引用
收藏
页码:411 / 423
页数:12
相关论文
共 50 条
  • [31] Diophantine Inequality by Unlike Powers of Primes
    Li ZHU
    Chinese Annals of Mathematics,Series B, 2022, (01) : 125 - 136
  • [32] On a Diophantine inequality with different powers of primes
    Liu, Huafeng
    Italian Journal of Pure and Applied Mathematics, 2022, 47 : 532 - 549
  • [33] Diophantine inequality by unlike powers of primes
    Li Zhu
    The Ramanujan Journal, 2020, 51 : 307 - 318
  • [34] DIOPHANTINE APPROXIMATION INVOLVING PRIMES
    LIU, MC
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1977, 289 : 199 - 208
  • [35] Diophantine Inequality by Unlike Powers of Primes
    ZHU, Li
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (01) : 125 - 136
  • [36] Diophantine inequality by unlike powers of primes
    Zhu, Li
    RAMANUJAN JOURNAL, 2020, 51 (02): : 307 - 318
  • [37] SIMULTANEOUS DIOPHANTINE APPROXIMATION WITH PRIMES
    HARMAN, G
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 39 : 405 - 413
  • [38] Diophantine Approximation by Special Primes
    Dimitrov, Stoyan
    PROCEEDINGS OF THE 44TH INTERNATIONAL CONFERENCE "APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS", 2018, 2048
  • [39] DIOPHANTINE APPROXIMATION WITH GAUSSIAN PRIMES
    Harman, Glyn
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (04): : 1505 - 1519
  • [40] SIMULTANEOUS DIOPHANTINE APPROXIMATION USING PRIMES
    BALOG, A
    FRIEDLANDER, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 : 289 - 292