Diophantine approximation with mixed powers of primes

被引:0
|
作者
Yuhui Liu
机构
[1] Jiangnan University,School of Science
来源
The Ramanujan Journal | 2021年 / 56卷
关键词
Diophantine inequality; Prime; Davenport–Heilbronn method; Exceptional set; 11D75; 11P32;
D O I
暂无
中图分类号
学科分类号
摘要
Let k be a positive integer with k≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 5$$\end{document}, λ1,λ2,λ3,λ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1, \lambda _2, \lambda _3, \lambda _4$$\end{document} be nonzero real numbers, not all of the same sign, with λ1/λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1/\lambda _2$$\end{document} irrational and algebraic. Suppose that V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {V}}$$\end{document} is a well-spaced sequence and δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta >0$$\end{document}. By E4k(V,X,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{4k}({\mathcal {V}}, X, \delta )$$\end{document}, we denote the number of v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in {\mathcal {V}}$$\end{document} with v≤X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \le X$$\end{document} for which |λ1p12+λ2p22+λ3p34+λ4p4k-v|<v-δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |\lambda _1 p_1^2 + \lambda _2 p_2^2+ \lambda _3 p_3^4+ \lambda _4 p_4^k - v| < v^{-\delta } \end{aligned}$$\end{document}has no solution in primes p1,p2,p3,p4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3,p_4$$\end{document}. In this paper, it is proved that E4k(V,X,δ)≪X1-σ(k)+2δ+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{4k}({\mathcal {V}}, X, \delta ) \ll X^{1-\sigma (k)+2\delta +\varepsilon }$$\end{document}, where σ(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (k)$$\end{document} relies on k. This result constitutes a refinement upon that of Qu and Zeng (Diophantine approximation with prime variables and mixed powers. Ramanujan J 52:625–639, 2020).
引用
收藏
页码:411 / 423
页数:12
相关论文
共 50 条
  • [1] Diophantine approximation with mixed powers of primes
    Ge, Wenxu
    Liu, Huake
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (07) : 1903 - 1918
  • [2] Diophantine approximation with mixed powers of primes
    Liu, Yuhui
    RAMANUJAN JOURNAL, 2021, 56 (02): : 411 - 423
  • [3] Diophantine approximation with mixed powers of primes
    Fu, Linzhu
    Hu, Liqun
    Long, Xuan
    RAMANUJAN JOURNAL, 2025, 66 (04):
  • [4] Diophantine Approximation with Mixed Powers of Primes
    Liu, Huafeng
    Huang, Jing
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (05): : 1073 - 1090
  • [5] A note on the exceptional set for Diophantine approximation with mixed powers of primes
    Quanwu Mu
    Zhipeng Gao
    The Ramanujan Journal, 2023, 60 : 551 - 570
  • [6] A note on the exceptional set for Diophantine approximation with mixed powers of primes
    Mu, Quanwu
    Gao, Zhipeng
    RAMANUJAN JOURNAL, 2023, 60 (02): : 551 - 570
  • [7] On Diophantine approximation by unlike powers of primes
    Ge, Wenxu
    Li, Weiping
    Wang, Tianze
    OPEN MATHEMATICS, 2019, 17 : 544 - 555
  • [8] Diophantine approximation by unlike powers of primes
    Liu, Zhixin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (09) : 2445 - 2452
  • [9] On Diophantine problems with mixed powers of primes
    Ge, Wenxu
    Wang , Tianqin
    ACTA ARITHMETICA, 2018, 182 (02) : 183 - 199
  • [10] A Diophantine approximation problem with unlike powers of primes
    Li, Xinyan
    Ge, Wenxu
    AIMS MATHEMATICS, 2025, 10 (01): : 736 - 753