Photophysical and photocatalytic properties of Li2M(WO4)2 (M = Co and Ni)

被引:0
|
作者
Jun Lv
Yupeng Yuan
Xianli Huang
Haifeng Shi
Hanmin Tian
Zhaosheng Li
Tao Yu
Jinhua Ye
Zhigang Zou
机构
[1] Ecomaterials and Renewable Energy Research Center,National Laboratory of Solid State Microstructures
[2] Nanjing University,Department of Materials Science and Technology
[3] Nanjing University,Department of Physics
[4] Photocatalytic Materials Center,undefined
[5] National Institute for Materials Science (NIMS),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Li2M(WO4)2 (M = Co and Ni) were synthesized by a conventional solid-state reaction method and characterized by powder x-ray diffraction, Brunauer-Emmet-Teller (BET) measurement, ultraviolet-visible (UV-vis) diffuse reflectance spectra, Raman spectroscopy, and photocatalytic evaluation measurements. Photocatalytic water splitting results showed that Li2M(WO4)2 (M = Co and Ni) exhibited abilities for H2 evolution with Pt cocatalyst from an aqueous methanol solution and for O2 evolution from an aqueous AgNO3 solution under UV light irradiation. Theoretical calculation, absorbance analysis, and photocatalytic H2 evolution experiment revealed that the position of W 5d level shifted to the negative side with respect to the reduced potential of H+/H2. The photocatalytic H2 evolution over Li2M(WO4)2 is discussed from the view of crystal and electronic structure point.
引用
收藏
页码:3309 / 3315
页数:6
相关论文
共 50 条
  • [31] Antiferromagnetic spin structure and negative thermal expansion of Li2Ni(WO4)2
    Karna, Sunil K.
    Wang, C. W.
    Sankar, R.
    Avdeev, M.
    Singh, A.
    Muthuselvam, I. Panneer
    Singh, V. N.
    Guo, G. Y.
    Chou, F. C.
    PHYSICAL REVIEW B, 2015, 92 (01)
  • [32] Spectroscopic properties and magnetic phase transitions in scheelite M(I)Cr(MoO4)2 and wolframite M(I)Cr(WO4)2 crystals, where M(I) = Li, Na, K, and Cs
    Hanuza, J
    Maczka, M
    Hermanowicz, K
    Deren, PJ
    Strek, W
    Folcik, L
    Drulis, H
    JOURNAL OF SOLID STATE CHEMISTRY, 1999, 148 (02) : 468 - 478
  • [33] 1.06 μm laser characteristics of Nd:KY(WO4)2 crystal
    Han, XM
    Zhang, LZ
    Qiu, MW
    Wang, GF
    MATERIALS RESEARCH INNOVATIONS, 2003, 7 (06) : 355 - 357
  • [34] Efficient Nd:KGd(WO4)2 laser at 1.538 μm wavelength
    Raevsky, EV
    Gulin, AV
    Ustimenko, NS
    Pavlovitch, VL
    SOLID STATE LASERS IX, 2000, 3929 : 124 - 128
  • [35] Transport Processes on the M2(WO4)3|WO3 (M = Sm, Gd) Interphase Boundary
    A. F. Guseva
    N. N. Pestereva
    D. A. Lopatin
    E. L. Vostrotina
    D. V. Korona
    Russian Journal of Physical Chemistry A, 2019, 93 : 555 - 560
  • [36] Transport Processes on the M2(WO4)3|WO3 (M = Sm, Gd) Interphase Boundary
    Guseva, A. F.
    Pestereva, N. N.
    Lopatin, D. A.
    Vostrotina, E. L.
    Korona, D., V
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 93 (03) : 555 - 560
  • [37] Cation distribution in Li2M(II)Sn3O8, M(II) = Mg, Co, Fe
    Trendafilova, T.
    Kovacheva, D.
    Petrov, K.
    Hewat, A.
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2006, : 475 - 480
  • [38] Electrical Transport Properties of Ce2(WO4)3, Dy2(WO4)3 and Ho2(WO4)3
    Maurya, K. C.
    Thakur, A. N.
    Yadav, S. K.
    ASIAN JOURNAL OF CHEMISTRY, 2011, 23 (07) : 3089 - 3092
  • [39] Efficient 2-μm laser oscillation of 5%Tm3+ : KLu(WO4)2 disks and 5%Tm3+ : KLu(WO4)2/KLu(WO4)2 composite structures
    Vatnik, S. M.
    Vedin, I. A.
    Kurbatov, P. F.
    Pavlyuk, A. A.
    QUANTUM ELECTRONICS, 2014, 44 (11) : 989 - 992
  • [40] Luminescence properties of M2WO3MoO4(M=Li, Na):Eu3+
    Lu, Jie
    He, Dawei
    Tang, Wei
    Wang, Yongsheng
    Kuei Suan Jen Hsueh Pao/ Journal of the Chinese Ceramic Society, 2008, 36 (06): : 825 - 828