In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging

被引:0
|
作者
Huynh E. [1 ,2 ]
Leung B.Y.C. [3 ]
Helfield B.L. [2 ,3 ]
Shakiba M. [1 ,2 ]
Gandier J.-A. [4 ]
Jin C.S. [1 ,5 ,6 ]
Master E.R. [4 ]
Wilson B.C. [1 ,2 ]
Goertz D.E. [2 ,3 ]
Zheng G. [1 ,2 ,5 ,6 ]
机构
[1] Princess Margaret Cancer Center, Techna Institute, University Health Network, Toronto, M5G 2M9, ON
[2] Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, ON
[3] Sunnybrook Health Sciences Center, Toronto, M4N 3M5, ON
[4] Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, M5S 3E5, ON
[5] Department of Pharmaceutical Sciences, University of Toronto, Toronto, M5S 3M2, ON
[6] Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5G 1L7, ON
基金
加拿大创新基金会; 加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1038/nnano.2015.25
中图分类号
学科分类号
摘要
Converting nanoparticles or monomeric compounds into larger supramolecular structures by endogenous or external stimuli is increasingly popular because these materials are useful for imaging and treating diseases. However, conversion of microstructures to nanostructures is less common. Here, we show the conversion of microbubbles to nanoparticles using low-frequency ultrasound. The microbubble consists of a bacteriochlorophyll-lipid shell around a perfluoropropane gas. The encapsulated gas provides ultrasound imaging contrast and the porphyrins in the shell confer photoacoustic and fluorescent properties. On exposure to ultrasound, the microbubbles burst and form smaller nanoparticles that possess the same optical properties as the original microbubble. We show that this conversion is possible in tumour-bearing mice and could be validated using photoacoustic imaging. With this conversion, our microbubble can potentially be used to bypass the enhanced permeability and retention effect when delivering drugs to tumours. © 2015 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:325 / 332
页数:7
相关论文
共 50 条
  • [41] Multimodality Imaging In Vivo for Preclinical Assessment of Tumor-Targeted Doxorubicin Nanoparticles
    Hwang, Jae Youn
    Park, Jinhyoung
    Kang, Bong Jin
    Lubow, David J.
    Chu, David
    Farkas, Daniel L.
    Shung, K. Kirk
    Medina-Kauwe, Lali K.
    PLOS ONE, 2012, 7 (04):
  • [42] Small-Molecule Porphyrin-Based Organic Nanoparticles with Remarkable Photothermal Conversion Efficiency for in Vivo Photoacoustic Imaging and Photothermal Therapy
    Wu, Fengshou
    Chen, Li
    Yue, Liangliang
    Wang, Kai
    Cheng, Kai
    Chen, Jun
    Luo, Xiaogang
    Zhang, Tao
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (24) : 21408 - 21416
  • [43] Multimodality Imaging in Cardiology
    Ghilardi, Adriana
    JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (03)
  • [44] Training for Multimodality Imaging
    Patrick Bourguet
    European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39 : 555 - 556
  • [45] Multimodality cardiac imaging
    Gaemperli, Oliver
    Kaufmann, Philipp A.
    JOURNAL OF NUCLEAR CARDIOLOGY, 2010, 17 (01) : 4 - 7
  • [46] Multimodality imaging in amyloidosis
    Howard, Stephanie
    Jagannathan, Jyothi
    Krajewski, Katherine
    Giardino, Angela
    Zukotynski, Katherine
    Regan, Kevin O.
    Ghobrial, Irene
    Ramaiya, Nikhil
    CANCER IMAGING, 2012, 12 (01) : 109 - 117
  • [47] Multimodality Imaging of Aortitis
    Hartlage, Gregory R.
    Palios, John
    Barron, Bruce J.
    Stillman, Arthur E.
    Bossone, Eduardo
    Clements, Stephen D.
    Lerakis, Stamatios
    JACC-CARDIOVASCULAR IMAGING, 2014, 7 (06) : 605 - 619
  • [48] Multimodality imaging - Introduction
    Moseley, M
    Donnan, G
    STROKE, 2004, 35 (11) : 2632 - 2634
  • [49] MULTIMODALITY IMAGING IN CARDIOMYOPATHY
    Shirani, J.
    CARDIOLOGY, 2016, 134 : 295 - 295
  • [50] Training for Multimodality Imaging
    Bourguet, Patrick
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2012, 39 (04) : 555 - 556