Solutions for a class of fractional Hamiltonian systems with a parameter

被引:0
|
作者
Ziheng Zhang
César E. Torres Ledesma
机构
[1] Tianjin Polytechnic University,Department of Mathematics
[2] Universidad Nacional de Trujillo,Departamento de Mathemáticas
关键词
Fractional Hamiltonian systems; Critical point; Variational methods; Mountain pass theorem; 34C37; 35A15; 35B38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we are concerned with the existence of solutions for the following fractional Hamiltonian systems with a parameter [graphic not available: see fulltext]where α∈(1/2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1/2,1)$$\end{document}, t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in {\mathbb {R}}$$\end{document}, u∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in {\mathbb {R}}^n$$\end{document}, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is a parameter, L∈C(R,Rn2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\in C({\mathbb {R}},{\mathbb {R}}^{n^2})$$\end{document} is a symmetric matrix for all t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in {\mathbb {R}}$$\end{document}, W∈C1(R×Rn,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W\in C^1({\mathbb {R}}\times {\mathbb {R}}^n,{\mathbb {R}})$$\end{document} and ∇W(t,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla W(t,u)$$\end{document} is the gradient of W(t, u) at u. The novelty of this paper is that, assuming L(t) is a symmetric and positive semi-definite matrix for all t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in {\mathbb {R}}$$\end{document}, that is, L(t)≡0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(t)\equiv 0$$\end{document} is allowed to occur in some finite interval T of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}, W(t, u) satisfies Ambrosetti–Rabinowitz condition and some other reasonable hypotheses, we show the existence of nontrivial solution of (FHS)λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\lambda $$\end{document}, which vanishes on R\T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}\backslash T$$\end{document} as λ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \rightarrow \infty $$\end{document}, and converges to u~∈Hα(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{u}\in H^\alpha ({\mathbb {R}})$$\end{document}; here u~∈E0α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{u}\in E_0^\alpha $$\end{document} is a nontrivial solution of the Dirichlet BVP for fractional systems on the finite interval T. Recent results are generalized and significantly improved.
引用
收藏
页码:451 / 468
页数:17
相关论文
共 50 条
  • [31] GROUND STATE SOLUTION FOR A CLASS FRACTIONAL HAMILTONIAN SYSTEMS
    Lv, Ying
    Tang, Chunlei
    Guo, Boling
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (02): : 620 - 648
  • [32] Solutions of a class of Hamiltonian elliptic systems in RN
    Yang, Minbo
    Chen, Wenxiong
    Ding, Yanheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (02) : 338 - 349
  • [33] Existence and Multiplicity of Solutions for a Class of Hamiltonian Systems
    Khachnaoui, Khaled
    UKRAINIAN MATHEMATICAL JOURNAL, 2024, 76 (06) : 1035 - 1053
  • [34] Existence and multiplicity of solutions for a class of Hamiltonian systems
    Claudianor O. Alves
    Tuhina Mukherjee
    Monatshefte für Mathematik, 2020, 192 : 269 - 289
  • [35] Periodic solutions for a class of superquadratic Hamiltonian systems
    Tao, Zhu-Lian
    Yan, Shang'an
    Wu, Song-Lin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) : 152 - 158
  • [36] Periodic solutions for a class of nonautonomous Hamiltonian systems
    Long, YM
    Xu, XJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (3-4) : 455 - 463
  • [37] Existence and multiplicity of solutions for a class of Hamiltonian systems
    Alves, Claudianor O.
    Mukherjee, Tuhina
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (02): : 269 - 289
  • [38] Unboundedness of solutions of a class of planar Hamiltonian systems
    Yang, Xiaojing
    Lo, Kueiming
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (11) : 1317 - 1331
  • [39] Multiplicity of solutions to fractional Hamiltonian systems with impulsive effects
    Nyamoradi, Nemat
    Rodriguez-Lopez, Rosana
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 254 - 263
  • [40] EXISTENCE OF SOLUTIONS TO FRACTIONAL HAMILTONIAN SYSTEMS WITH COMBINED NONLINEARITIES
    Zhang, Ziheng
    Yuan, Rong
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,