Commutators of Marcinkiewicz integral with rough kernels on Sobolev spaces

被引:0
|
作者
Yan Ping Chen
Yong Ding
Xin Xia Wang
机构
[1] University of Science and Technology of Beijing,Department of Mathematics and Mechanics, School of Applied Science
[2] Ministry of Education,School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems (BNU)
[3] Xinjiang University,The College of Mathematics and Systems Science
关键词
Marcinkiewicz integral; commutator; rough kernel; Sobolev space; Bony paraproduct; 42B20; 42B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the authors give the boundedness of the commutator [b, µΩ,γ] from the homogeneous Sobolev space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot L_\gamma ^p \left( {\mathbb{R}^n } \right)$\end{document} to the Lebesgue space Lp(ℝn) for 1 < p < ∞, where µΩ,γ denotes the Marcinkiewicz integral with rough hypersingular kernel defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu _{\Omega ,\gamma } f\left( x \right) = \left( {\int_0^\infty {\left| {\int_{\left| {x - y} \right| \leqslant t} {\frac{{\Omega \left( {x - y} \right)}} {{\left| {x - y} \right|^{n - 1} }}f\left( y \right)dy} } \right|^2 \frac{{dt}} {{t^{3 + 2\gamma } }}} } \right)^{\frac{1} {2}} ,$\end{document}, with Ω ∈ L1(Sn−1) for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0 < \gamma < min\left\{ {\frac{n} {2},\frac{n} {p}} \right\}$\end{document} or Ω ∈ L(log+L)β(Sn−1) for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left| {1 - \frac{2} {p}} \right| < \beta < 1\left( {0 < \gamma < \frac{n} {2}} \right)$\end{document}, respectively.
引用
收藏
页码:1345 / 1366
页数:21
相关论文
共 50 条