Dominated Compactness Theorem in Banach Function Spaces and its Applications

被引:0
|
作者
Humberto Rafeiro
Stefan Samko
机构
[1] Universidade do Algarve,Departamento de Matemática
来源
关键词
Compact operators; integral operator; Krasnoselskii theorem; compact majorant; regular operator; Banach function space; variable exponent Lebesgue space; potential operator; Primary 47B07; Secondary 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
A famous dominated compactness theorem due to Krasnosel’skiĭ states that compactness of a regular linear integral operator in Lp follows from that of a majorant operator. This theorem is extended to the case of the spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p(\cdot)}(\Omega, \mu, \varrho), \mu \Omega < \infty$$\end{document}, with variable exponent p(·), where we also admit power type weights \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho$$\end{document}. This extension is obtained as a corollary to a more general similar dominated compactness theorem for arbitrary Banach function spaces for which the dual and associate spaces coincide. The result on compactness in the spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p(\cdot)}(\Omega, \mu, \varrho)$$\end{document} is applied to fractional integral operators over bounded open sets.
引用
收藏
页码:669 / 681
页数:12
相关论文
共 50 条
  • [31] ON A FIXED POINT THEOREM IN 2-BANACH SPACES AND SOME OF ITS APPLICATIONS
    Janusz BRZDEK
    Krzysztof CIEPLINSKI
    Acta Mathematica Scientia(English Series), 2018, 38 (02) : 377 - 390
  • [32] ON A FIXED POINT THEOREM IN 2-BANACH SPACES AND SOME OF ITS APPLICATIONS
    Brzdek, Janusz
    Cieplinski, Krzysztof
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (02) : 377 - 390
  • [33] ON A FIXED POINT THEOREM IN 2-BANACH SPACES AND SOME OF ITS APPLICATIONS
    Janusz BRZDEK
    Krzysztof CIEPLINSKI
    Acta Mathematica Scientia, 2018, (02) : 377 - 390
  • [34] On Super Weak Compactness of Subsets and its Equivalences in Banach Spaces
    Cheng, Lixin
    Cheng, Qingjin
    Luo, Sijie
    Tu, Kun
    Zhang, Jichao
    JOURNAL OF CONVEX ANALYSIS, 2018, 25 (03) : 899 - 926
  • [35] Compactness Criteria for Stieltjes Function Spaces and Applications
    Francisco J. Fernández
    F. Adrián F. Tojo
    Carlos Villanueva
    Results in Mathematics, 2024, 79
  • [36] Compactness Criteria for Stieltjes Function Spaces and Applications
    Fernandez, Francisco J.
    Tojo, F. Adrian F.
    Villanueva, Carlos
    RESULTS IN MATHEMATICS, 2024, 79 (03)
  • [37] Compactness in quasi-Banach function spaces with applications to L1 of the semivariation of a vector measure
    del Campos, Ricardo
    Fernandez, Anrtonio
    Mayoral, Fernando
    Naranjo, Francisco
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [38] COMPACTNESS IN FUNCTION SPACES - ANOTHER PROOF OF A THEOREM OF PRYCE,JD
    YOUNG, NJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1973, 6 (24): : 739 - 740
  • [39] KRASNOSELSKII'S THEOREM IN GENERALIZED BANACH SPACES AND APPLICATIONS
    Petre, Ioan-Radu
    Petrusel, Adrian
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2012, (85) : 1 - 20
  • [40] Generalized compactness in linear spaces and its applications
    Protasov, V. Yu.
    Shirokov, M. E.
    SBORNIK MATHEMATICS, 2009, 200 (5-6) : 697 - 722