A famous dominated compactness theorem due to Krasnosel’skiĭ states that compactness of a regular linear integral operator in Lp follows from that of a majorant operator. This theorem is extended to the case of the spaces \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{p(\cdot)}(\Omega, \mu, \varrho), \mu \Omega < \infty$$\end{document}, with variable exponent p(·), where we also admit power type weights \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varrho$$\end{document}. This extension is obtained as a corollary to a more general similar dominated compactness theorem for arbitrary Banach function spaces for which the dual and associate spaces coincide. The result on compactness in the spaces \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{p(\cdot)}(\Omega, \mu, \varrho)$$\end{document} is applied to fractional integral operators over bounded open sets.