Synchronization between fractional order complex chaotic systems

被引:0
|
作者
Singh A.K. [1 ]
Yadav V.K. [1 ]
Das S. [1 ]
机构
[1] Department of Mathematical Sciences, Indian Institute of Technology (BHU), Varanasi
关键词
Active control method; Chaotic system; Complex Lorenz system; Complex Lu system; Complex T system; Fractional derivative; Synchronization;
D O I
10.1007/s40435-016-0226-1
中图分类号
学科分类号
摘要
In this article, the authors have studied synchronization between a pair of fractional order complex systems viz., Lorenz and Lu systems, Lu and T systems, Lorenz and T systems using active control method. The numerical results and simulation show that this method is effective to synchronize the fractional order complex dynamical systems. The main feature of the article is the comparison of time of synchronization when pair of systems approach from integer order to fractional order. The numerical results are carried out using MATLAB. © 2016, Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:756 / 770
页数:14
相关论文
共 50 条
  • [31] Exponential synchronization of fractional-order complex chaotic systems and its application
    Yadav, Vijay K.
    Shukla, Vijay K.
    Das, Subir
    CHAOS SOLITONS & FRACTALS, 2021, 147
  • [32] Synchronization between a Class of Variable-Order Fractional Hyperjerk Chaotic Systems
    Perez-Diaz, Juan Jose
    Zambrano-Serrano, Ernesto
    Loya-Cabrera, Alejandro Eutimio
    Cervantes-Garcia, Oscar Eduardo
    Rodriguez-Cruz, Jose Ramon
    Platas-Garza, Miguel Angel
    Posadas-Castillo, Cornelio
    COMPUTACION Y SISTEMAS, 2023, 27 (02): : 345 - 355
  • [33] Synchronization for fractional order chaotic systems with uncertain parameters
    Qiao Wang
    Dong-Lian Qi
    International Journal of Control, Automation and Systems, 2016, 14 : 211 - 216
  • [34] Generalized projective synchronization of fractional order chaotic systems
    Peng, Guojun
    Jiang, Yaolin
    Chen, Fang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (14) : 3738 - 3746
  • [35] Synchronization for Fractional Order Chaotic Systems with Uncertain Parameters
    Wang, Qiao
    Qi, Dong-Lian
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2016, 14 (01) : 211 - 216
  • [36] Generalized Projective Synchronization for Fractional Order Chaotic Systems
    Zhou, Ping
    Kuang, Fei
    Cheng, Yuan-Ming
    CHINESE JOURNAL OF PHYSICS, 2010, 48 (01) : 49 - 56
  • [37] Robust Synchronization of Uncertain Fractional Order Chaotic Systems
    Luo, Junhai
    Liu, Heng
    Yang, Jiangfeng
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (10): : 2109 - 2116
  • [38] Synchronization of fractional chaotic systems based on fractional-order interval systems
    Sun Ning
    ACTA PHYSICA SINICA, 2011, 60 (12)
  • [39] Combination complex synchronization among three incommensurate fractional-order chaotic systems
    Jiang, Cuimei
    Liu, Changan
    Liu, Shutang
    Zhang, Fangfang
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2016, 16 (03): : 308 - 323
  • [40] Dual projective synchronization between integer-order and fractional-order chaotic systems
    Zhang, Qing
    Xiao, Jian
    Zhang, Xiao-Qing
    Cao, Duan-Yang
    OPTIK, 2017, 141 : 90 - 98