Holonomic D-modules on abelian varieties

被引:0
|
作者
Christian Schnell
机构
[1] Stony Brook University,Department of Mathematics
来源
关键词
Line Bundle; Abelian Variety; Coherent Sheave; Coherent Sheaf; Distinguished Triangle;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Fourier-Mukai transform for holonomic D-modules on complex abelian varieties. Among other things, we show that the cohomology support loci of a holonomic D-module are finite unions of linear subvarieties, which go through points of finite order for objects of geometric origin; that the standard t-structure on the derived category of holonomic complexes corresponds, under the Fourier-Mukai transform, to a certain perverse coherent t-structure in the sense of Kashiwara and Arinkin-Bezrukavnikov; and that Fourier-Mukai transforms of simple holonomic D-modules are intersection complexes in this t-structure. This supports the conjecture that Fourier-Mukai transforms of holonomic D-modules are “hyperkähler perverse sheaves”.
引用
收藏
页码:1 / 55
页数:54
相关论文
共 50 条