The Takagi function τ: [0,1] → [0, 1] is a continuous non-differentiable function constructed by Takagi in 1903. The level sets L(y) = {x : τ(x) = y} of the Takagi function τ(x) are studied by introducing a notion of local level set into which level sets are partitioned. Local level sets are simple to analyze, reducing questions to understanding the relation of level sets to local level sets, which is more complicated. It is known that for a “generic” full Lebesgue measure set of ordinates y, the level sets are finite sets. In contrast, here it is shown for a “generic” full Lebesgue measure set of abscissas x, the level set L(τ(x)) is uncountable. An interesting singular monotone function is constructed associated to local level sets, and is used to show the expected number of local level sets at a random level y is exactly \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\frac{3}{2}}$$\end{document}.
机构:
IST Austria, Klosterneuburg, Austria
Duke Univ, Dept Comp Sci, Durham, NC 27706 USA
Duke Univ, Dept Math, Durham, NC 27706 USAIST Austria, Klosterneuburg, Austria
Bendich, Paul
Edelsbrunner, Herbert
论文数: 0引用数: 0
h-index: 0
机构:
IST Austria, Klosterneuburg, Austria
Duke Univ, Dept Comp Sci, Durham, NC 27706 USA
Duke Univ, Dept Math, Durham, NC 27706 USA
Geomagic, Durham, NC 27513 USAIST Austria, Klosterneuburg, Austria
Edelsbrunner, Herbert
Morozov, Dmitriy
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Comp Sci, Dept Math, Stanford, CA 94305 USAIST Austria, Klosterneuburg, Austria
Morozov, Dmitriy
Patel, Amit
论文数: 0引用数: 0
h-index: 0
机构:
IST Austria, Klosterneuburg, Austria
Duke Univ, Dept Comp Sci, Durham, NC 27706 USAIST Austria, Klosterneuburg, Austria