Compton Scattering of Hermite Gaussian Wave γ Ray

被引:0
|
作者
Tomoyuki Maruyama
Takehito Hayakawa
Toshitaka Kajino
机构
[1] Nihon University,College of Bioresource Sciences
[2] National Astronomical Observatory of Japan,undefined
[3] National Institutes for Quantum and Radiological Science and Technology,undefined
[4] Tokai,undefined
[5] Beihang University,undefined
[6] School of Physics,undefined
[7] International Research Center for Big-Bang Cosmology and Element Genesis,undefined
[8] The University of Tokyo,undefined
[9] Bunkyo-ku,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
One of candidates for the generation mechanism of high linearly polarized γ rays in γ-ray bursts is synchrotron radiations from high energy electrons under strong magnetic fields. If this scenario is true, Hermite Gaussian (HG) wave photons, which are one of high-order Gaussian modes, are also generated by high-order harmonic radiations in strong magnetic fields. The HG wave γ rays propagating along the z-direction have quantum numbers of nodes of nx and ny in the x- and y-directions, respectively. We calculate the differential cross sections for Compton scattering of photons described by HG wave function in the framework of relativistic quantum mechanics. The results indicate that it is possible to identify the HG wave photon and its quantum numbers nx and ny and by measuring the azimuthal angle dependence of differential cross section or the energy spectra of the scattered photon as a function of the azimuthal angle.
引用
收藏
相关论文
共 50 条
  • [21] Inelastic X-ray scattering in conditions of the existence of standing X-ray wave. Interference effects of Compton and thermal diffuse scattering
    Inst of Crystallography of RAS, Moscow, Russia
    Surface Investigation X-Ray, Synchrotron and Neutron Techniques, 2000, 15 (05): : 873 - 890
  • [22] Self-decelerating Airy-elegant-Hermite-Gaussian and Airy-helical-elegant-Hermite-Gaussian wave packets
    Deng, Fu
    Zhang, Zhenhua
    Huang, Jiayao
    Deng, Dongmei
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (11) : 2204 - 2208
  • [23] INVERSE COMPTON SCATTERING OF COSMIC-RAY ELECTRONS
    JONES, FC
    PHYSICAL REVIEW, 1965, 137 (5B): : 1306 - &
  • [24] Anomalous nonlinear X-ray Compton scattering
    Fuchs, Matthias
    Trigo, Mariano
    Chen, Jian
    Ghimire, Shambhu
    Shwartz, Sharon
    Kozina, Michael
    Jiang, Mason
    Henighan, Thomas
    Bray, Crystal
    Ndabashimiye, Georges
    Bucksbaum, Philip H.
    Feng, Yiping
    Herrmann, Sven
    Carini, Gabriella A.
    Pines, Jack
    Hart, Philip
    Kenney, Christopher
    Guillet, Serge
    Boutee, Sebastien
    Williams, Garth J.
    Messerschmidt, Marc
    Seibert, M. Marvin
    Moeller, Stefan
    Hastings, Jerome B.
    Reis, David A.
    NATURE PHYSICS, 2015, 11 (11) : 964 - 970
  • [25] Compton scattering and photoluminescence for x-ray imaging
    Wootton, AJ
    Ryutov, DD
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (03): : 1180 - 1186
  • [26] Compton scattering of quasi-monochromatic γ-ray beam
    Omer, Mohamed
    Shizuma, Toshiyuki
    Hajima, Ryoichi
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 951
  • [27] X-RAY COMPTON PLASMON SCATTERING BY SOLIDS
    PIMPALE, A
    MANDE, C
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1975, 8 (15): : 2463 - 2472
  • [28] AN X-RAY SPECTROMETER FOR COMPTON-SCATTERING
    SAKURAI, Y
    ITO, M
    URAI, T
    TANAKA, Y
    SAKAI, N
    IWAZUMI, T
    KAWATA, H
    ANDO, M
    SHIOTANI, N
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1992, 63 (01): : 1190 - 1193
  • [29] Experiment on Gamma Ray Generation by Laser Compton Scattering
    D. Li
    K. Imasaki
    M. Aoki
    S. Miyamoto
    S. Amano
    T. Mochizuki
    International Journal of Infrared and Millimeter Waves, 2003, 24 : 1301 - 1305
  • [30] Experiment on gamma ray generation by laser Compton scattering
    Li, D
    Imasaki, K
    Aoki, M
    Miyamoto, S
    Amano, S
    Mochizuki, T
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2003, 24 (08): : 1301 - 1305