On the dual-phase-lag thermoelasticity theory

被引:0
|
作者
Ahmed S. El-Karamany
Magdy A. Ezzat
机构
[1] Nizwa University,Department of Mathematical and Physical Sciences
[2] Alexandria University,Department of Mathematics, Faculty of Education
[3] Al-Qassim University,Department of Mathematics and Sciences, Faculty of Sciences and Letters in Al Bukayriyyah
来源
Meccanica | 2014年 / 49卷
关键词
Dual-phase-lag thermoelasticity; Reciprocal theorem; Uniqueness theorem; Variational principle; Continuous dependence result; Dissipative inequality;
D O I
暂无
中图分类号
学科分类号
摘要
The uniqueness and reciprocal theorems are proved without the use of Laplace Transforms for the Dual-Phase-Lag thermoelasticity theory. Variational principle is established for a linear anisotropic and inhomogeneous thermoelastic solid. The dissipative inequality is used to obtain a continuous dependence result for isotropic solid.
引用
收藏
页码:79 / 89
页数:10
相关论文
共 50 条
  • [31] On the time differential dual-phase-lag thermoelastic model
    Chirita, Stan
    MECCANICA, 2017, 52 (1-2) : 349 - 361
  • [32] Spatial behavior of the dual-phase-lag deformable conductors
    Chirita, Stan
    Zampoli, Vittorio
    JOURNAL OF THERMAL STRESSES, 2018, 41 (10-12) : 1276 - 1296
  • [33] Dual-Phase-Lag model of skin bioheat transfer
    Xu, Feng
    Lu, Tianjian
    Seffen, Keith A.
    BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 1, 2008, : 505 - +
  • [34] Qualitative aspects in dual-phase-lag heat conduction
    Quintanilla, Ramon
    Racke, Reinhard
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2079): : 659 - 674
  • [35] Thermoelastic Bresse system with dual-phase-lag model
    Noelia Bazarra
    Ivana Bochicchio
    José R. Fernández
    Maria Grazia Naso
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [36] A note on stability in dual-phase-lag heat conduction
    Quintanilla, R
    Racke, R
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (7-8) : 1209 - 1213
  • [37] A condition on the delay parameters in the one-dimensional dual-phase-lag thermoelastic theory
    Quintanilla, R
    JOURNAL OF THERMAL STRESSES, 2003, 26 (07) : 713 - 721
  • [38] A note on the two temperature theory with dual-phase-lag delay: Some exact solutions
    Quintanilla, R.
    Jordan, P. M.
    MECHANICS RESEARCH COMMUNICATIONS, 2009, 36 (07) : 796 - 803
  • [39] Thermoelastic Bresse system with dual-phase-lag model
    Bazarra, Noelia
    Bochicchio, Ivana
    Fernandez, Jose R.
    Naso, Maria Grazia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [40] Numerical analysis of some dual-phase-lag models
    Bazarra, N.
    Copetti, M. I. M.
    Fernandez, J. R.
    Quintanilla, R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (02) : 407 - 426