Nonparametric Bayesian inference in applications

被引:0
|
作者
Peter Müeller
Fernando A. Quintana
Garritt Page
机构
[1] University of Texas at Austin,
[2] Pontificia Universidad Católica de Chile,undefined
[3] Brigham Young University,undefined
来源
关键词
Nonparametric inference; Bayesian inference; Dirichlet process; Polya tree;
D O I
暂无
中图分类号
学科分类号
摘要
Nonparametric Bayesian (BNP) inference is concerned with inference for infinite dimensional parameters, including unknown distributions, families of distributions, random mean functions and more. Better computational resources and increased use of massive automated or semi-automated data collection makes BNP models more and more common. We briefly review some of the main classes of models, with an emphasis on how they arise from applied research questions, and focus in more depth only on BNP models for spatial inference as a good example of a class of inference problems where BNP models can successfully address limitations of parametric inference.
引用
收藏
页码:175 / 206
页数:31
相关论文
共 50 条
  • [31] Variational Inference for Nonparametric Bayesian Quantile Regression
    Abeywardana, Sachinthaka
    Ramos, Fabio
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1686 - 1692
  • [32] On nonparametric Bayesian inference for the distribution of a random sample
    Gelfand, AE
    Mukhopadhyay, S
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1995, 23 (04): : 411 - 420
  • [33] Nonparametric Bayesian inference on multivariate exponential families
    Vega-Brown, William
    Doniec, Marek
    Roy, Nicholas
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [34] Approximation of laws of random probabilities by mixtures of Dirichlet distributions with applications to nonparametric Bayesian inference
    Regazzini, E
    Sazonov, VV
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2000, 45 (01) : 93 - 110
  • [35] An adaptive truncation method for inference in Bayesian nonparametric models
    Griffin, J. E.
    [J]. STATISTICS AND COMPUTING, 2016, 26 (1-2) : 423 - 441
  • [36] Streaming Variational Inference for Bayesian Nonparametric Mixture Models
    Tank, Alex
    Foti, Nicholas J.
    Fox, Emily B.
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 968 - 976
  • [37] Nonparametric Bayesian inference of the microcanonical stochastic block model
    Peixoto, Tiago P.
    [J]. PHYSICAL REVIEW E, 2017, 95 (01)
  • [38] An adaptive truncation method for inference in Bayesian nonparametric models
    J. E. Griffin
    [J]. Statistics and Computing, 2016, 26 : 423 - 441
  • [39] A nonparametric Bayesian model for inference in related longitudinal studies
    Müller, P
    Rosner, GL
    De Iorio, M
    MacEachern, S
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2005, 54 : 611 - 626
  • [40] Bayesian Nonparametric Inference of Switching Dynamic Linear Models
    Fox, Emily
    Sudderth, Erik B.
    Jordan, Michael I.
    Willsky, Alan S.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (04) : 1569 - 1585