Generalization of combination–combination synchronization of chaotic n-dimensional fractional-order dynamical systems

被引:0
|
作者
Gamal M. Mahmoud
Tarek M. Abed-Elhameed
Mansour E. Ahmed
机构
[1] Assiut University,Department of Mathematics, Faculty of Science
[2] Umm Al-Qura University,Department of Mathematics, Faculty of University College in Aljamoum
来源
Nonlinear Dynamics | 2016年 / 83卷
关键词
Combination–combination synchronization; Chaotic dynamical system; Fractional-order dynamical system;
D O I
暂无
中图分类号
学科分类号
摘要
The generalization of combination–combination (C–C) synchronization of chaotic n-dimensional (nD) fractional-order (0<α≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0<\alpha \le 1)$$\end{document} dynamical systems is studied. Firstly, we replace arbitrary four chaotic nD ordinary dynamical systems by four chaotic nD fractional-order dynamical systems which have unique solutions. Secondly, we extend the scheme of a recent paper (Sun et al. in Nonlinear Dyn 73: 1211–1222, 2013) to study the generalization of C–C synchronization among four nD fractional-order dynamical systems. Examples of combination–combination synchronization among four identical or different of 6D chaotic fractional-order systems are discussed. The analytical formula of the control functions is tested numerically to achieve C–C synchronization, and good agreement is found.
引用
收藏
页码:1885 / 1893
页数:8
相关论文
共 50 条
  • [31] Chaotic synchronization between different fractional-order chaotic systems
    Zhou, Ping
    Ding, Rui
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (10): : 2839 - 2848
  • [32] Synchronization of fractional chaotic systems based on fractional-order interval systems
    Sun Ning
    ACTA PHYSICA SINICA, 2011, 60 (12)
  • [33] Predefined-time synchronization of different dimensional fractional-order chaotic systems
    Zhang, Jiachen
    Qiu, Le
    Wang, Jianhao
    Ding, Zhixia
    Li, Sai
    Yang, Le
    PROCEEDINGS OF THE 36TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC 2024, 2024, : 1370 - 1374
  • [34] Combination event-triggered adaptive networked synchronization communication for nonlinear uncertain fractional-order chaotic systems
    Li, Qiaoping
    Liu, Sanyang
    Chen, Yonggang
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 333 : 521 - 535
  • [35] Combination synchronization of different dimensions fractional-order non-autonomous chaotic systems using scaling matrix
    Zerimeche, Hadjer
    Houmor, Tarek
    Berkane, Abdelhak
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2021, 9 (02) : 788 - 796
  • [36] Combination synchronization of different dimensions fractional-order non-autonomous chaotic systems using scaling matrix
    Hadjer Zerimeche
    Tarek Houmor
    Abdelhak Berkane
    International Journal of Dynamics and Control, 2021, 9 : 788 - 796
  • [37] Synchronization of fractional-order chaotic systems based on the fractional-order sliding mode controller
    Yan Xiaomei
    Shang Ting
    Zhao Xiaoguo
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 429 - 434
  • [38] Adaptive synchronization of a class of fractional-order chaotic systems
    Ma Tie-Dong
    Jiang Wei-Bo
    Fu Jie
    Chai Yi
    Chen Li-Ping
    Xue Fang-Zheng
    ACTA PHYSICA SINICA, 2012, 61 (16)
  • [39] Synchronization of fractional-order chaotic systems with different structures
    Zhang Ruo-Xun
    Yang Shi-Ping
    ACTA PHYSICA SINICA, 2008, 57 (11) : 6852 - 6858
  • [40] Synchronization of fractional-order chaotic systems with uncertain parameters
    Zhang, Hong
    Pu, Qiumei
    ACHIEVEMENTS IN ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL BASED ON INFORMATION TECHNOLOGY, PTS 1 AND 2, 2011, 171-172 : 723 - 727