Generalization of combination–combination synchronization of chaotic n-dimensional fractional-order dynamical systems

被引:0
|
作者
Gamal M. Mahmoud
Tarek M. Abed-Elhameed
Mansour E. Ahmed
机构
[1] Assiut University,Department of Mathematics, Faculty of Science
[2] Umm Al-Qura University,Department of Mathematics, Faculty of University College in Aljamoum
来源
Nonlinear Dynamics | 2016年 / 83卷
关键词
Combination–combination synchronization; Chaotic dynamical system; Fractional-order dynamical system;
D O I
暂无
中图分类号
学科分类号
摘要
The generalization of combination–combination (C–C) synchronization of chaotic n-dimensional (nD) fractional-order (0<α≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0<\alpha \le 1)$$\end{document} dynamical systems is studied. Firstly, we replace arbitrary four chaotic nD ordinary dynamical systems by four chaotic nD fractional-order dynamical systems which have unique solutions. Secondly, we extend the scheme of a recent paper (Sun et al. in Nonlinear Dyn 73: 1211–1222, 2013) to study the generalization of C–C synchronization among four nD fractional-order dynamical systems. Examples of combination–combination synchronization among four identical or different of 6D chaotic fractional-order systems are discussed. The analytical formula of the control functions is tested numerically to achieve C–C synchronization, and good agreement is found.
引用
收藏
页码:1885 / 1893
页数:8
相关论文
共 50 条
  • [1] Generalization of combination-combination synchronization of chaotic n-dimensional fractional-order dynamical systems
    Mahmoud, Gamal M.
    Abed-Elhameed, Tarek M.
    Ahmed, Mansour E.
    NONLINEAR DYNAMICS, 2016, 83 (04) : 1885 - 1893
  • [2] Generalized Synchronization Involving a Linear Combination of Fractional-Order Chaotic Systems
    Sayed, Wafaa S.
    Radwan, Ahmed G.
    Abd-El-Hafiz, Salwa K.
    2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2016,
  • [3] Combination Synchronization of Three Different Fractional-Order Delayed Chaotic Systems
    Li, Bo
    Zhou, Xiaobing
    Wang, Yun
    COMPLEXITY, 2019, 2019
  • [4] Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems
    Jiang, Cuimei
    Liu, Shutang
    Wang, Da
    ENTROPY, 2015, 17 (08): : 5199 - 5217
  • [5] Triple compound combination synchronization of eleven n-dimensional chaotic systems
    Khattar, Dinesh
    Agrawal, Neha
    Singh, Govind
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2023, 11 (05) : 2499 - 2513
  • [6] Triple compound combination synchronization of eleven n-dimensional chaotic systems
    Dinesh Khattar
    Neha Agrawal
    Govind Singh
    International Journal of Dynamics and Control, 2023, 11 : 2499 - 2513
  • [7] Combination complex synchronization among three incommensurate fractional-order chaotic systems
    Jiang, Cuimei
    Liu, Changan
    Liu, Shutang
    Zhang, Fangfang
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2016, 16 (03): : 308 - 323
  • [8] Double compound combination synchronization among eight n-dimensional chaotic systems
    Gamal M Mahmoud
    Tarek M Abed-Elhameed
    Ahmed A Farghaly
    Chinese Physics B, 2018, (08) : 154 - 162
  • [9] Double compound combination synchronization among eight n-dimensional chaotic systems
    Mahmoud, Gamal M.
    Abed-Elhameed, Tarek M.
    Farghaly, Ahmed A.
    CHINESE PHYSICS B, 2018, 27 (08)
  • [10] Projective Synchronization of N-Dimensional Chaotic Fractional-Order Systems via Linear State Error Feedback Control
    Xin, Baogui
    Chen, Tong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012