On Nonlocal Choquard System with Hardy–Littlewood–Sobolev Critical Exponents

被引:0
|
作者
Xiaorong Luo
Anmin Mao
Shuai Mo
机构
[1] Qufu Normal University,School of Mathematical Sciences
[2] Nankai University,School of Mathematical Sciences and LPMC
来源
关键词
Choquard system; Upper critical exponent; Star-shaped domain; Variational method; 35J05; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
Standing wave solutions of the following Hartree system with nonlocal interaction and critical exponent are considered: -(a+b∫Ω|∇u|2)Δu=h(x)∫Ω|v(y)|2μ∗|x-y|μdy|u|2μ∗-2u+fλ(x)|u|q-2u,inΩ,-(a+b∫Ω|∇v|2)Δv=h(x)∫Ω|u(y)|2μ∗|x-y|μdy|v|2μ∗-2v+gσ(x)|v|q-2v,inΩ,u,v≥0,inΩ,u,v=0,on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lllll} &{}-(a+b\displaystyle \int _{\Omega }|\nabla u|^2)\Delta u=h(x)\left( \displaystyle \int _{\Omega }\frac{|v(y)|^{2^*_\mu }}{|x-y|^\mu }\mathrm{{d}}y\right) |u|^{2^*_\mu -2}u\\ &{} \qquad \qquad \qquad \qquad \qquad \qquad \qquad + f_\lambda (x)|u|^{q-2}u,\quad in\,\Omega ,\\ &{}-(a+b\displaystyle \int _{\Omega }|\nabla v|^2)\Delta v=h(x)\left( \displaystyle \int _{\Omega }\frac{|u(y)|^{2^*_\mu }}{|x-y|^\mu }\mathrm{{d}}y\right) |v|^{2^*_\mu -2}v\\ &{} \qquad \qquad \qquad \qquad \qquad \qquad \qquad + g_\sigma (x)|v|^{q-2}v,\quad in\,\Omega ,\\ &{} u,v\ge 0, \quad \ in\,\Omega ,\\ &{} u,v=0, \quad \ on\,\partial \Omega , \end{array} \right. \end{aligned}$$\end{document}where 1<q<2,2μ∗=2N-μN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<2, 2^{*}_{\mu }=\frac{2N-\mu }{N-2}$$\end{document} is the upper critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality. We study the effect of nonlocal interaction on the number of solutions in the case of general response function Ψ(x)=|x|-μ(0<μ<N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi (x)=|x|^{-\mu } (0<\mu <N)$$\end{document}, which possesses more information on the mutual interaction between the particles. When parameters pair (λ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda , \sigma )$$\end{document} belongs to a certain subset of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}, we prove the existence, nonexistence and the limit behavior of the nonnegative vector solutions depending on parameters. In the special case of q=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2$$\end{document}, existence of nonnegative solution is also established. Our work extends and develops some recent results in the literature.
引用
收藏
相关论文
共 50 条
  • [21] High energy positive solutions for a coupled Hartree system with Hardy-Littlewood-Sobolev critical exponents
    Gao, Fashun
    Liu, Haidong
    Moroz, Vitaly
    Yang, Minbo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 287 : 329 - 375
  • [22] Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Bueno, H.
    da Hora Lisboa, N.
    Vieira, L. L.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):
  • [23] Bound state solutions of fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Yang, Xiaolong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (05):
  • [24] Elliptic equations in RN involving Sobolev supercritical and upper Hardy-Littlewood-Sobolev critical exponents
    Madeira, Gustavo Ferron
    Miyagaki, Olimpio Hiroshi
    Pucci, Patrizia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 425 : 274 - 299
  • [25] A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality
    Gao, Fashun
    Yang, Minbo
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)
  • [26] Choquard-type equations with Hardy-Littlewood Sobolev upper-critical growth
    Cassani, Daniele
    Zhang, Jianjun
    ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 1184 - 1212
  • [27] Normalized Solutions for the Fractional Choquard Equations with Hardy-Littlewood-Sobolev Upper Critical Exponent
    Meng, Yuxi
    He, Xiaoming
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [28] Multiple solutions for nonhomogeneous Choquard equation involving Hardy-Littlewood-Sobolev critical exponent
    Shen, Zifei
    Gao, Fashun
    Yang, Minbo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [29] Normalized solutions to the nonlinear Choquard equations with Hardy-Littlewood-Sobolev upper critical exponent
    Shang, Xudong
    Ma, Pei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 521 (02)
  • [30] GROUND STATES OF NONLINEAR FRACTIONAL CHOQUARD EQUATIONS WITH HARDY-LITTLEWOOD-SOBOLEV CRITICAL GROWTH
    Jin, Hua
    Liu, Wenbin
    Zhang, Huixing
    Zhang, Jianjun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (01) : 123 - 144