Fuzzy Version of Gini’s Index

被引:0
|
作者
Besma Belhadj
Firas Kaabi
Mejda Bouanani
机构
[1] University of ElManar,LaREQuaD, FSEGT
[2] LIRS,Department of Economics and Finance, College of Business Administration
[3] IHE Tunis,undefined
[4] Taif University,undefined
[5] University of Bordeaux,undefined
来源
Social Indicators Research | 2021年 / 157卷
关键词
Gini’s index; Membership function of absolute equality; Membership function of inequality; Fuzzy Gini index; Fuzzy inequaly index; C02; C43; D63;
D O I
暂无
中图分类号
学科分类号
摘要
The Gini index (Gini in Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle relazioni statistiche, Studi Economico-Giuridici, Facoltà di Giurisprudenza della Regia Università di Cagliari, anno III, parte II, Cuppini, Bologna, 1912) is the oldest and famous inequality measure. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. In this paper, a fuzzy version of Gini’s index is proposed and used it to propose an axiomatic measure of inequality.
引用
收藏
页码:1079 / 1087
页数:8
相关论文
共 50 条
  • [41] Gini-Impurity Index Analysis
    Yuan, Ye
    Wu, Liji
    Zhang, Xiangmin
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 3154 - 3169
  • [42] An Elementary Interpretation of the Gini Inequality Index
    S. Subramanian
    Theory and Decision, 2002, 52 : 375 - 379
  • [43] Critical Scaling through Gini Index
    Das, Soumyaditya
    Biswas, Soumyajyoti
    PHYSICAL REVIEW LETTERS, 2023, 131 (15)
  • [44] An elementary interpretation of the Gini inequality index
    Subramanian, S
    THEORY AND DECISION, 2002, 52 (04) : 375 - 379
  • [45] THE GINI INDEX AND THE MEASUREMENT OF MULTIDIMENSIONAL INEQUALITY
    FLUCKIGER, Y
    SILBER, J
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 1994, 56 (02) : 225 - 228
  • [46] Decomposition of the gini index by sources of income
    Jȩdrzejczak A.
    International Advances in Economic Research, 2008, 14 (4) : 441 - 447
  • [47] On a control chart for the Gini index with simulations
    Karagrigoriou, A.
    Makrides, A.
    Vonta, I.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (04) : 1121 - 1137
  • [48] A NOTE ON THE CALCULATION AND INTERPRETATION OF THE GINI INDEX
    LERMAN, RI
    YITZHAKI, S
    ECONOMICS LETTERS, 1984, 15 (3-4) : 363 - 368
  • [49] Gini index estimation for lifetime data
    Xiaofeng Lv
    Gupeng Zhang
    Guangyu Ren
    Lifetime Data Analysis, 2017, 23 : 275 - 304
  • [50] Gini covariance matrix and its affine equivariant version
    Xin Dang
    Hailin Sang
    Lauren Weatherall
    Statistical Papers, 2019, 60 : 641 - 666