Regularity for graphs with bounded anisotropic mean curvature

被引:0
|
作者
Antonio De Rosa
Riccardo Tione
机构
[1] University of Maryland,Department of Mathematics
[2] Max Planck Institute for Mathematics in the Sciences,undefined
来源
Inventiones mathematicae | 2022年 / 230卷
关键词
49Q05; 49Q20; 53A10; 35D30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document}-dimensional Lipschitz graphs with anisotropic mean curvature bounded in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}, p>m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>m$$\end{document}, are regular almost everywhere in every dimension and codimension. This provides partial or full answers to multiple open questions arising in the literature. The anisotropic energy is required to satisfy a novel ellipticity condition, which holds for instance in a C1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,1}$$\end{document} neighborhood of the area functional. This condition is proved to imply the atomic condition. In particular we provide the first non-trivial class of examples of anisotropic energies in high codimension satisfying the atomic condition, addressing an open question in the field. As a byproduct, we deduce the rectifiability of varifolds (resp. of the mass of varifolds) with locally bounded anisotropic first variation for a C1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,1}$$\end{document} (resp. C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}) neighborhood of the area functional. In addition to these examples, we also provide a class of anisotropic energies in high codimension, far from the area functional, for which the rectifiability of the mass of varifolds with locally bounded anisotropic first variation holds. To conclude, we show that the atomic condition excludes non-trivial Young measures in the case of anisotropic stationary graphs.
引用
收藏
页码:463 / 507
页数:44
相关论文
共 50 条
  • [31] A local regularity theorem for mean curvature flow
    White, B
    ANNALS OF MATHEMATICS, 2005, 161 (03) : 1487 - 1519
  • [32] Quantitative Stratification and the Regularity of Mean Curvature Flow
    Jeff Cheeger
    Robert Haslhofer
    Aaron Naber
    Geometric and Functional Analysis, 2013, 23 : 828 - 847
  • [33] A boundary regularity theorem for mean curvature flow
    Stone, A
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1996, 44 (02) : 371 - 434
  • [34] Discrete anisotropic curvature flow of graphs
    Deckelnick, K
    Dziuk, G
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (06): : 1203 - 1222
  • [35] Mean curvature in manifolds with Ricci curvature bounded from below
    Choe, Jaigyoung
    Fraser, Ailana
    COMMENTARII MATHEMATICI HELVETICI, 2018, 93 (01) : 55 - 69
  • [36] Approximation of the anisotropic mean curvature flow
    Chambolle, Antonin
    Novaga, Matteo
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (06): : 833 - 844
  • [37] On uniqueness of graphs with constant mean curvature
    Lopez, Rafael
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2006, 46 (04): : 771 - 787
  • [38] Killing graphs with prescribed mean curvature
    Marcos Dajczer
    Pedro A. Hinojosa
    Jorge Herbert de Lira
    Calculus of Variations and Partial Differential Equations, 2008, 33 : 231 - 248
  • [39] Translating graphs by mean curvature flow
    Leili Shahriyari
    Geometriae Dedicata, 2015, 175 : 57 - 64
  • [40] Killing graphs with prescribed mean curvature
    Dajczer, Marcos
    Hinojosa, Pedro A.
    de Lira, Jorge Herbert
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (02) : 231 - 248