The Perron-Frobenius theorem - A proof with the use of Markov chains

被引:0
|
作者
Al'pin Yu.A. [1 ]
Al'pina V.S. [2 ]
机构
[1] Kazan' State University, Kazan'
[2] Kazan' State Technological University, Kazan'
关键词
Russia; Markov Chain; State Technological; Ergodic Theorem; Nonnegative Matrix;
D O I
10.1007/s10958-009-9347-9
中图分类号
学科分类号
摘要
The Perron-Frobenius theorem for an irreducible nonnegative matrix is proved using the matrix graph and the ergodic theorem of the theory of Markov chains. © 2009 Springer Science+Business Media, Inc.
引用
收藏
页码:675 / 680
页数:5
相关论文
共 50 条
  • [41] AN EXTENSION OF PERRON-FROBENIUS THEOREM FOR POSITIVE SYMMETRICAL MATRICES
    HORIGUCHI, T
    FUKUI, Y
    PROGRESS OF THEORETICAL PHYSICS, 1992, 88 (06): : 1219 - 1223
  • [42] TWISTED PERRON-FROBENIUS THEOREM AND L-FUNCTIONS
    ADACHI, T
    SUNADA, T
    JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 71 (01) : 1 - 46
  • [43] FURTHER RESULTS FOR PERRON-FROBENIUS THEOREM FOR NONNEGATIVE TENSORS
    Yang, Yuning
    Yang, Qingzhi
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (05) : 2517 - 2530
  • [44] EXPANDING ECONOMY MODELS AND A GENERALIZATION OF PERRON-FROBENIUS THEOREM
    THOMPSON, GL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A220 - A220
  • [45] A Markov chain representation of the normalized Perron-Frobenius eigenvector
    Cerf, Raphael
    Dalmau, Joseba
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
  • [46] STOCHASTIC FIXED POINTS AND NONLINEAR PERRON-FROBENIUS THEOREM
    Babaei, E.
    Evstigneev, I. V.
    Pirogov, S. A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (10) : 4315 - 4330
  • [47] Perron-Frobenius theorem for matrices with some negative entries
    Tarazaga, P
    Raydan, M
    Hurman, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 328 (1-3) : 57 - 68
  • [48] AN APPLICATION OF THE PERRON-FROBENIUS THEOREM TO A DAMAGE MODEL PROBLEM
    ALZAID, AA
    RAO, CR
    SHANBHAG, DN
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1986, 48 : 43 - 50
  • [49] Perron-Frobenius theorem for nonnegative multilinear forms and extensions
    Friedland, S.
    Gaubert, S.
    Han, L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (02) : 738 - 749
  • [50] Extension of the Perron-Frobenius theorem: From linear to homogeneous
    De Leenheer, P
    Aeyels, D
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 4278 - 4281