Factor Analysis Regression for Predictive Modeling with High-Dimensional Data

被引:0
|
作者
Randy Carter
Netsanet Michael
机构
[1] State University of New York at Buffalo,Department of Biostatistics
[2] The Boeing Company,Boeing Commercial Airplanes
来源
关键词
Bilinear factor model; Principal component analysis; Principal component regression; Partial least squares; Factor structure covariance matrix; Factor analysis regression; Mean square error of prediction; Monte Carlo studies; Cross-validation;
D O I
暂无
中图分类号
学科分类号
摘要
Factor analysis regression (FAR) of yi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y _i$$\end{document} on xi=(x1i,x2i,…,xpi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{x}}}_i=(x _{1i},x _{2i},\ldots ,x _{pi})$$\end{document}, i = 1,2,...,n, has been studied only in the low-dimensional case (p<n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p < n )$$\end{document}, using maximum likelihood (ML) factor extraction. The ML method breaks down in high-dimensional cases (p>n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p >n )$$\end{document}. In this paper, we develop a high-dimensional version of FAR based on a computationally efficient method of factor extraction. We compare the performance of our high-dimensional FAR with partial least squares regression (PLSR) and principal component regression (PCR) under three underlying correlation structures: arbitrary correlation, factor model correlation structure, and when y is independent of x. Under each structure, we generated Monte Carlo training samples of sizes n<p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n <p$$\end{document} from a multivariate normal distribution with each structure. Parameters were fixed at estimates obtained from analyses of real data sets. Given the independence structure, we observed severe over-fitting by PLSR compared to FAR and PCR. Under the two dependent structures, FAR had a notably better average mean square error of prediction than PCR. The performance of FAR and PLSR were not notably different given the dependent structures. Thus, overall, FAR performed better than either PLSR or PCR.
引用
收藏
页码:115 / 132
页数:17
相关论文
共 50 条
  • [31] Adaptive Bayesian density regression for high-dimensional data
    Shen, Weining
    Ghosal, Subhashis
    BERNOULLI, 2016, 22 (01) : 396 - 420
  • [32] Partial Cox regression analysis for high-dimensional microarray gene expression data
    Li, Hongzhe
    Gui, Jiang
    BIOINFORMATICS, 2004, 20 : 208 - 215
  • [33] Subspace clustering of high-dimensional data: a predictive approach
    Brian McWilliams
    Giovanni Montana
    Data Mining and Knowledge Discovery, 2014, 28 : 736 - 772
  • [34] NETWORK-REGULARIZED HIGH-DIMENSIONAL COX REGRESSION FOR ANALYSIS OF GENOMIC DATA
    Sun, Hokeun
    Lin, Wei
    Feng, Rui
    Li, Hongzhe
    STATISTICA SINICA, 2014, 24 (03) : 1433 - 1459
  • [35] Subspace clustering of high-dimensional data: a predictive approach
    McWilliams, Brian
    Montana, Giovanni
    DATA MINING AND KNOWLEDGE DISCOVERY, 2014, 28 (03) : 736 - 772
  • [36] Modeling high-dimensional dependence in astronomical data
    Vio, R.
    Nagler, T. W.
    Andreani, P.
    ASTRONOMY & ASTROPHYSICS, 2020, 642
  • [37] Representative Factor Generation for the Interactive Visual Analysis of High-Dimensional Data
    Turkay, Cagatay
    Lundervold, Arvid
    Lundervold, Astri Johansen
    Hauser, Helwig
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (12) : 2621 - 2630
  • [38] High-dimensional data analysis and visualisation
    Chen, Cathy W. S.
    Lombardo, Rosaria
    Ripamonti, Enrico
    COMPUTATIONAL STATISTICS, 2024, 39 (01) : 1 - 2
  • [39] Combining Factor Models and Variable Selection in High-Dimensional Regression
    Kneip, Alois
    Sarda, Pascal
    RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 197 - 202
  • [40] Procrustes Analysis for High-Dimensional Data
    Andreella, Angela
    Finos, Livio
    PSYCHOMETRIKA, 2022, 87 (04) : 1422 - 1438