Genetic analysis of high amylose content in maize (Zea mays L.) using a triploid endosperm model

被引:0
|
作者
Yusheng Wu
Mark Campbell
Yang Yen
Zeno Wicks
Amir M. H. Ibrahim
机构
[1] South Dakota State University,Plant Science Department
[2] Truman State University,Division of Science
[3] SDSU,Biology and Microbiology Department
[4] Texas A&M University,Department of Soil and Crop Sciences
来源
Euphytica | 2009年 / 166卷
关键词
Maize; Amylose; Endosperm; Triploid model;
D O I
暂无
中图分类号
学科分类号
摘要
Traditionally, high amylose starch (HAS) from maize (Zeamays L.) has been mainly used as an ingredient in gum candies and as an adhesive for corrugated cardboard. Two recent advances have increased interest in the use of HAS. The first one has been the development of starch-based biodegradable thermo plastics. Second, high amylose maize is a source of resistant starch (RS), a type of starch that resists digestion. As a food additive, consumers can benefit from added RS since it will lower the glycemic index and the risk of colon cancer in accordance with recent research in food science. Normal maize has about 25% amylose starch. A maize inbred line, GEMS-0067 (Reg. no GP-550, PI 643420) possesses high amylose modifier gene(s) that, together with the recessive amylose extender (ae) gene, raises the starch amylose percentage to at least 70%. The objective of this study was to determine the gene effects, non-allelic interactions and heritability of high amylose content in maize using Bogyo’s triploid model. Nine populations were derived from a cross between H99ae, a maize inbred line with 55% amylose starch, and GEMS-0067. Data were collected from two locations in Missouri (MO) and South Dakota (SD) over 2 years (2005 and 2006). Incomplete dominance explained some of the inheritance of HAS. Maternal effects were also detected. The triploid models for MO and SD were separately established based on the corresponding data in 2005 and 2006. The additive and type 1 dominance effects in MO, and the additive, type 1 dominance, type 2 dominance, and additive × additive in SD were significantly different from zero meaning that those effects played an important role in amylose synthesis. Both broad-sense and narrow-sense heritabilities were high indicating that high amylose content could be effectively selected for in a segregating population.
引用
收藏
页码:155 / 164
页数:9
相关论文
共 50 条
  • [41] Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients
    Guo, Xiaotong
    Duan, Xiaoguang
    Wu, Yongzhen
    Cheng, Jieshan
    Zhang, Juan
    Zhang, Hongxia
    Li, Bei
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (07) : 1670 - 1677
  • [42] ESTIMATION OF GENETIC COMPONENTS IN MAIZE (Zea mays L.) ENDOGAMIC LINES
    Rodriguez-Perez, Gilberto
    Zavala-Garcia, Francisco
    Trevino-Ramirez, Jose E.
    Ojeda-Zacarias, Carmen
    Mendoza-Elos, Mariano
    Cervantes-Ortiz, Francisco
    Gamez-Vazquez, Alfredo J.
    Andrio-Enriquez, Enrique
    Torres-Flores, Jose L.
    AGROCIENCIA, 2019, 53 (02) : 245 - 258
  • [43] The Genetic Architecture of Maize (Zea mays L.) Kernel Weight Determination
    Alvarez Prado, Santiago
    Lopez, Cesar G.
    Lynn Senior, M.
    Borras, Lucas
    G3-GENES GENOMES GENETICS, 2014, 4 (09): : 1611 - 1621
  • [44] Mitotic activity and changes in DNA content during Zea mays L. endosperm development
    Kuran, H
    Marciniak, K
    ACTA SOCIETATIS BOTANICORUM POLONIAE, 2002, 71 (03) : 195 - 200
  • [45] Genetic dissection of haploid male fertility in maize (Zea mays L.)
    Yang, Jiwei
    Qu, Yanzhi
    Chen, Qiong
    Tang, Jihua
    Lubberstedt, Thomas
    Li, Haochuan
    Liu, Zonghua
    PLANT BREEDING, 2019, 138 (03) : 259 - 265
  • [46] Association Mapping for Enhancing Maize (Zea mays L.) Genetic Improvement
    Yan, Jianbing
    Warburton, Marilyn
    Crouch, Jonathan
    CROP SCIENCE, 2011, 51 (02) : 433 - 449
  • [47] Riboflavin and Cultivars Affecting Genetic Parameters in Maize (Zea mays L.)
    Abdulhamed, Zeyad A.
    Alfalahi, Ayoob O.
    Abood, Nihad M.
    8TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY (ICAST 2020), 2020, 2290
  • [48] The Impact of Using Microalgae as Biofertilizer in Maize (Zea mays L.)
    R. Dineshkumar
    J. Subramanian
    J. Gopalsamy
    P. Jayasingam
    A. Arumugam
    S. Kannadasan
    P. Sampathkumar
    Waste and Biomass Valorization, 2019, 10 : 1101 - 1110
  • [49] The Impact of Using Microalgae as Biofertilizer in Maize (Zea mays L.)
    Dineshkumar, R.
    Subramanian, J.
    Gopalsamy, J.
    Jayasingam, P.
    Arumugam, A.
    Kannadasan, S.
    Sampathkumar, P.
    WASTE AND BIOMASS VALORIZATION, 2019, 10 (05) : 1101 - 1110
  • [50] PATH ANALYSIS FOR MORPHOLOGICAL TRAITS IN MAIZE (Zea mays L.)
    Pavlov, Jovan
    Delic, Nenad
    Markovic, Ksenija
    Crevar, Milos
    Camdzija, Zoran
    Stevanovic, Milan
    GENETIKA-BELGRADE, 2015, 47 (01): : 295 - 301