A Mixed-Order Model to Assess Contaminant Declines

被引:0
|
作者
Craig A. Stow*
Leland J. Jackson
S. R. Carpenter
机构
[1] Duke University,Department of Biological Sciences, Division of Ecology
[2] Nicholas School of the Environment,Center for Limnology
[3] University of Calgary,undefined
[4] University of Wisconsin,undefined
关键词
BOD; mixed-order model;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a generalized form of the common first-order (exponential) decay model, that has potential utility for describing contaminant declines in environmental applications, particularly when declines are a mixture of many underlying processes. The exponent on contaminant concentration is left as a free parameter allowing the order of the reaction to be determined by the data. The mixed-order model is more flexible than models with the exponent determined a priori, facilitating an improved fit to observed behavior. We demonstrate the utility of this model, and compare it to two other models, by estimating PCB concentration declines in Lake Michigan fishes.
引用
收藏
页码:435 / 444
页数:9
相关论文
共 50 条
  • [41] Image Deconvolution Using Mixed-Order Salient Edge Selection
    Hu, Dandan
    Tan, Jieqing
    Ge, Xianyu
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (07) : 3902 - 3925
  • [42] THE EXACT DISCRETE ANALOG TO A CLOSED LINEAR MIXED-ORDER SYSTEM
    AGBEYEGBE, TD
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1984, 7 (03): : 363 - 375
  • [43] Organic mixed-order photonic crystal lasers with ultrasmall footprint
    Baumann, Kristian
    Stöferle, Thilo
    Moll, Nikolaj
    Mahrt, Rainer F.
    Wahlbrink, Thorsten
    Bolten, Jens
    Mollenhauer, Thomas
    Moormann, Christian
    Scherf, Ulli
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (17)
  • [44] On the maximal Lp-regularity of parabolic mixed-order systems
    Denk, Robert
    Seiler, Joerg
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2011, 11 (02) : 371 - 404
  • [45] Mixed-order transition in the antiferromagnetic quantum Ising chain in a field
    Lajko, Peter
    Igloi, Ferenc
    [J]. PHYSICAL REVIEW B, 2021, 103 (17)
  • [46] Linear Stability Analysis in a Mixed-Order Reaction–Subdiffusion System
    Zenyuk D.A.
    Malinetsky G.G.
    [J]. Mathematical Models and Computer Simulations, 2022, 14 (3) : 381 - 388
  • [47] Mixed-order basis functions for the locally-corrected Nystrom method
    Gedney, S
    Zhu, AM
    Lu, CC
    [J]. IEEE ANTENNAS AND PROPAGATION SOCIETY SYMPOSIUM, VOLS 1-4 2004, DIGEST, 2004, : 4044 - 4047
  • [48] Lasing from defect states in mixed-order organic laser structures
    Baumann, K.
    Raino, G.
    Moll, N.
    Stoeferle, Thilo
    Bolten, J.
    Wahlbrink, T.
    Mahrt, Rainer F.
    [J]. OPTOELECTRONIC INTEGRATED CIRCUITS XII, 2010, 7605
  • [49] Hierarchical mixed-order tangential vector finite elements for triangular elements
    Andersen, LS
    Volakis, JL
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS: STATE OF THE ART AND FUTURE TRENDS, 2000, 171 : 164 - 174
  • [50] Fast Analysis of Photonic Crystal Structures With Mixed-Order Prism Macroelements
    Karatzidis, Dimitrios I.
    Yioultsis, Traianos V.
    Kriezis, Emmanouil E.
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008, 26 (13-16) : 2002 - 2009