Cellular pathways during spawning induction in the starlet sea anemone Nematostella vectensis

被引:0
|
作者
Shelly Reuven
Mieka Rinsky
Vera Brekhman
Assaf Malik
Oren Levy
Tamar Lotan
机构
[1] University of Haifa,Marine Biology Department, The Leon H. Charney School of Marine Sciences
[2] Bar-Ilan University,Mina and Everard Goodman Faculty of Life Sciences
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In cnidarians, long-term ecological success relies on sexual reproduction. The sea anemone Nematostella vectensis, which has emerged as an important model organism for developmental studies, can be induced for spawning by temperature elevation and light exposure. To uncover molecular mechanisms and pathways underlying spawning, we characterized the transcriptome of Nematostella females before and during spawning induction. We identified an array of processes involving numerous receptors, circadian clock components, cytoskeleton, and extracellular transcripts that are upregulated upon spawning induction. Concurrently, processes related to the cell cycle, fatty acid metabolism, and other housekeeping functions are downregulated. Real-time qPCR revealed that light exposure has a minor effect on expression levels of most examined transcripts, implying that temperature change is a stronger inducer for spawning in Nematostella. Our findings reveal the potential mechanisms that may enable the mesenteries to serve as a gonad-like tissue for the developing oocytes and expand our understanding of sexual reproduction in cnidarians.
引用
收藏
相关论文
共 50 条
  • [41] Activation of cellular defenses in the sea anemone Nematostella vectensis by PAHs and crude oil
    Tarrant, A. M.
    Reitzel, A. M.
    Kwock, C. K.
    Goldstone, J., V
    Jenny, M. J.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2012, 52 : E172 - E172
  • [42] Comparison of developmental trajectories in the starlet sea anemone Nematostella vectensis:: embryogenesis, regeneration, and two forms of asexual fission
    Reitzel, Adam M.
    Burton, Patrick M.
    Krone, Cassandra
    Finnerty, John R.
    INVERTEBRATE BIOLOGY, 2007, 126 (02) : 99 - 112
  • [43] Characterization of the piRNA pathway during development of the sea anemone Nematostella vectensis
    Praher, Daniela
    Zimmermann, Bob
    Genikhovich, Grigory
    Columbus-Shenkar, Yaara
    Modepalli, Vengamanaidu
    Aharoni, Reuven
    Moran, Yehu
    Technau, Ulrich
    RNA BIOLOGY, 2017, 14 (12) : 1727 - 1741
  • [44] Starvation decreases immunity and immune regulatory factor NF-κB in the starlet sea anemone Nematostella vectensis
    Carrion, Pablo J. Aguirre
    Desai, Niharika
    Brennan, Joseph J.
    Fifer, James E.
    Siggers, Trevor
    Davies, Sarah W.
    Gilmore, Thomas D.
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [45] Function and expression dynamics of Rho, Rac and Cdc42 genes in the starlet sea anemone, Nematostella vectensis
    Khalili, Setareh
    Magie, Craig R.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2011, 51 : E212 - E212
  • [46] Starvation decreases immunity and immune regulatory factor NF-κB in the starlet sea anemone Nematostella vectensis
    Pablo J. Aguirre Carrión
    Niharika Desai
    Joseph J. Brennan
    James E. Fifer
    Trevor Siggers
    Sarah W. Davies
    Thomas D. Gilmore
    Communications Biology, 6
  • [47] Gap junctions in sea anemone, Nematostella vectensis, embryo
    Popova, L. B.
    Vornov, D. A.
    Kosevich, I. A.
    Panchin, Yu. V.
    ZHURNAL OBSHCHEI BIOLOGII, 2012, 73 (02): : 83 - 87
  • [48] Mechanisms of tentacle morphogenesis in the sea anemone Nematostella vectensis
    Fritz, Ashleigh E.
    Ikmi, Aissam
    Seidel, Christopher
    Paulson, Ariel
    Gibson, Matthew C.
    DEVELOPMENT, 2013, 140 (10): : 2212 - 2223
  • [49] Gap junctions in Nematostella vectensis sea anemone embryos
    L. B. Popova
    D. A. Voronov
    I. A. Kosevich
    Yu. V. Panchin
    Biology Bulletin Reviews, 2012, 2 (5) : 386 - 389
  • [50] Ultrastructure of the mesoglea of the sea anemone Nematostella vectensis (Edwardsiidae)
    Tucker, Richard P.
    Shibata, Bradley
    Blankenship, Thomas N.
    INVERTEBRATE BIOLOGY, 2011, 130 (01) : 11 - 24