First stability eigenvalue of singular minimal hypersurfaces in spheres

被引:0
|
作者
Jonathan J. Zhu
机构
[1] Harvard University,Department of Mathematics
关键词
53A10; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
In this short note we extend an estimate due to J. Simons on the first stability eigenvalue of minimal hypersurfaces in spheres to the singular setting. Specifically, we show that any singular minimal hypersurface in Sn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {S}}^{n+1}$$\end{document}, which is not totally geodesic and satisfies the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-structural hypothesis, has first stability eigenvalue at most -2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,2n$$\end{document}, with equality if and only if it is a product of two round spheres. The equality case was settled independently in the classical setting by Wu and Perdomo.
引用
收藏
相关论文
共 50 条