Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks

被引:0
|
作者
Liang Huang
Xu Feng
Anqi Feng
Yupin Huang
Li Ping Qian
机构
[1] Zhejiang University of Technology,College of Information Engineering
来源
Mobile Networks and Applications | 2022年 / 27卷
关键词
Mobile edge computing; Offloading; Deep learning; Distributed learning;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies mobile edge computing (MEC) networks where multiple wireless devices (WDs) choose to offload their computation tasks to an edge server. To conserve energy and maintain quality of service for WDs, the optimization of joint offloading decision and bandwidth allocation is formulated as a mixed integer programming problem. However, the problem is computationally limited by the curse of dimensionality, which cannot be solved by general optimization tools in an effective and efficient way, especially for large-scale WDs. In this paper, we propose a distributed deep learning-based offloading (DDLO) algorithm for MEC networks, where multiple parallel DNNs are used to generate offloading decisions. We adopt a shared replay memory to store newly generated offloading decisions which are further to train and improve all DNNs. Extensive numerical results show that the proposed DDLO algorithm can generate near-optimal offloading decisions in less than one second.
引用
收藏
页码:1123 / 1130
页数:7
相关论文
共 50 条
  • [21] Deep Reinforcement Learning-Based Computation Offloading in Vehicular Edge Computing
    Zhan, Wenhan
    Luo, Chunbo
    Wang, Jin
    Min, Geyong
    Duan, Hancong
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [22] ADRLO: Adaptive deep reinforcement learning-based offloading for edge computing
    Li, Zhigang
    Wang, Yutong
    Zhang, Wentao
    Li, Shujie
    Sun, Xiaochuan
    PHYSICAL COMMUNICATION, 2023, 61
  • [23] Efficient Deep Learning Approach for Computational Offloading in Mobile Edge Computing Networks
    Cheng, Xiaoliang
    Liu, Jingchun
    Jin, Zhigang
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [24] Task offloading based on deep learning for blockchain in mobile edge computing
    Chung-Hua Chu
    Wireless Networks, 2021, 27 : 117 - 127
  • [25] Task offloading based on deep learning for blockchain in mobile edge computing
    Chu, Chung-Hua
    WIRELESS NETWORKS, 2021, 27 (01) : 117 - 127
  • [26] A Deep Reinforcement Learning-Based Distributed Service Offloading Method for Edge Computing Empowered Internet of Vehicles
    Xu X.-L.
    Fang Z.-J.
    Qi L.-Y.
    Dou W.-C.
    He Q.
    Duan Y.-C.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (12): : 2382 - 2405
  • [27] Computation offloading and resource allocation based on distributed deep learning and software defined mobile edge computing
    Wang, Zhongyu
    Lv, Tiejun
    Chang, Zheng
    COMPUTER NETWORKS, 2022, 205
  • [28] Distributed Task Offloading in Cooperative Mobile Edge Computing Networks
    Wang, Dandan
    Zhu, Hongbin
    Qiu, Chenyang
    Zhou, Yong
    Lu, Jie
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 10487 - 10501
  • [29] Deep reinforcement learning-based multitask hybrid computing offloading for multiaccess edge computing
    Cai, Jun
    Fu, Hongtian
    Liu, Yan
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (09) : 6221 - 6243
  • [30] Mobile-Aware Online Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing Networks
    Li, Yuting
    Liu, Yitong
    Liu, Xingcheng
    Tu, Qiang
    Xie, Yi
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,