Monadic MV-algebras II: Monadic implicational subreducts

被引:0
|
作者
Cecilia R. Cimadamore
J. Patricio Díaz Varela
机构
[1] Universidad Nacional del Sur,Departamento de Matemática
[2] Instituto de Matemática de Bahía Blanca (INMABB) (CONICET-UNS),undefined
来源
Algebra universalis | 2014年 / 71卷
关键词
Primary: 06D35; Secondary: 08B15; 06D99; monadic MV-algebras; monadic implicational subreducts; Łukasiewicz implication algebras; subvarieties; equational bases;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the class of all monadic implicational subreducts, that is, the {→,∀,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{\rightarrow, \forall,1\}}$$\end{document}-subreducts of the class of monadic MV-algebras. We prove that this class is an equational class, which we denote by ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document}, and we give an equational basis for this variety. An algebra in ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document} is called a monadic Łukasiewicz implication algebra. We characterize the subdirectly irreducible members of ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document} and the congruences of every monadic Łukasiewicz implication algebra by monadic filters. We prove that ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document} is generated by its finite members. Finally, we completely describe the lattice of subvarieties, and we give an equational basis for each proper subvariety.
引用
收藏
页码:201 / 219
页数:18
相关论文
共 50 条
  • [21] Monadic BE-algebras
    Zaheriani, Seyed Yashar
    Zahiri, Omid
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (06) : 2987 - 2995
  • [22] Monadic Bounded Algebras
    Galym Akishev
    Robert Goldblatt
    Studia Logica, 2010, 96 : 1 - 40
  • [23] Monadic RM Algebras
    Jastrzebska, Malgorzata
    Walendziak, Andrzej
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2021, 37 (1-2) : 169 - 189
  • [24] Monadic Bounded Algebras
    Akishev, Galym
    Goldblatt, Robert
    STUDIA LOGICA, 2010, 96 (01) : 1 - 40
  • [25] Monadic Effect Algebras
    Zou, Yuxi
    Xin, Xiaolong
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [26] Monadic dynamic algebras
    Pinto, SM
    Oliveira-Martins, MT
    Pinto, MC
    MATHEMATICAL LOGIC QUARTERLY, 2006, 52 (02) : 134 - 150
  • [27] Boolean products of MV-Algebras: Hypernormal MV-algebras
    Cignoli, R
    Torrell, AT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (03) : 637 - 653
  • [28] Stone MV-algebras and strongly complete MV-algebras
    Jean B. Nganou
    Algebra universalis, 2017, 77 : 147 - 161
  • [29] Monadic GMV-algebras
    Rachunek, Jiri
    Salounova, Dana
    ARCHIVE FOR MATHEMATICAL LOGIC, 2008, 47 (03) : 277 - 297
  • [30] Free monadic Tarski algebras
    L.F. Monteiro
    M. Abad
    S. Savini
    J. Sewald
    algebra universalis, 1997, 37 : 106 - 118