Approximation of Laws of Multinomial Parameters by Mixtures of Dirichlet Distributions with Applications to Bayesian Inference

被引:0
|
作者
Eugenio Regazzini
Viatcheslav V. Sazonov
机构
[1] Università di Pavia,Dipartimento di Matematica
[2] IAMI-CNR,undefined
[3] Steklov Mathematical Institute,undefined
来源
Acta Applicandae Mathematica | 1999年 / 58卷
关键词
approximation of priors and posteriors; Dirichlet distributions; elicitation of prior beliefs; Lévy metric; Prokhorov metric; random measures;
D O I
暂无
中图分类号
学科分类号
摘要
Within the framework of Bayesian inference, when observations are exchangeable and take values in a finite space X, a prior P is approximated (in the Prokhorov metric) with any precision by explicitly constructed mixtures of Dirichlet distributions. Likewise, the posteriors are approximated with some precision by the posteriors of these mixtures of Dirichlet distributions. Approximations in the uniform metric for distribution functions are also given. These results are applied to obtain a method for eliciting prior beliefs and to approximate both the predictive distribution (in the variational metric) and the posterior distribution function of ∫ψd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde p$$ \end{document} (in the Lévy metric), when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde p$$ \end{document} is a random probability having distribution P.
引用
收藏
页码:247 / 264
页数:17
相关论文
共 50 条
  • [41] Bayesian Inference of Genetic Parameters Based on Conditional Decompositions of Multivariate Normal Distributions
    Hallander, Jon
    Waldmann, Patrik
    Wang, Chunkao
    Sillanpaa, Mikko J.
    GENETICS, 2010, 185 (02) : 645 - 654
  • [42] Inference of probability distributions of geotechnical parameters using adaptive Bayesian updating approach
    Jiang Shui-hua
    Feng Ze-wen
    Liu Xian
    Jiang Qing-hui
    Huang Jin-song
    Zhou Chuang-bing
    ROCK AND SOIL MECHANICS, 2020, 41 (01) : 325 - 335
  • [43] Variational Bayesian inference for infinite generalized inverted Dirichlet mixtures with feature selection and its application to clustering
    Bdiri, Taoufik
    Bouguila, Nizar
    Ziou, Djemel
    APPLIED INTELLIGENCE, 2016, 44 (03) : 507 - 525
  • [44] Variational Bayesian inference for infinite generalized inverted Dirichlet mixtures with feature selection and its application to clustering
    Taoufik Bdiri
    Nizar Bouguila
    Djemel Ziou
    Applied Intelligence, 2016, 44 : 507 - 525
  • [45] On classical and Bayesian inference for bivariate Poisson conditionals distributions: theory, methods and applications
    Arnold, Barry C.
    Ghosh, Indranil
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [46] APPROXIMATE BAYESIAN INFERENCE AS A FORM OF STOCHASTIC APPROXIMATION: A NEW CONSISTENCY THEORY WITH APPLICATIONS
    Chen, Ye
    Ryzhov, Ilya O.
    2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 534 - 544
  • [47] Family of extended mean mixtures of multivariate normal distributions: Properties, inference and applications
    Zhou, Guangshuai
    Yin, Chuancun
    AIMS MATHEMATICS, 2022, 7 (07): : 12390 - 12414
  • [49] Hierarchical Stochastic Model in Bayesian Inference for Engineering Applications: Theoretical Implications and Efficient Approximation
    Wu, Stephen
    Angelikopoulos, Panagiotis
    Beck, James L.
    Koumoutsakos, Petros
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART B-MECHANICAL ENGINEERING, 2019, 5 (01):
  • [50] Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference
    Bar-Yehuda, R
    Geiger, D
    Naor, J
    Roth, RM
    SIAM JOURNAL ON COMPUTING, 1998, 27 (04) : 942 - 959