Approximation of Laws of Multinomial Parameters by Mixtures of Dirichlet Distributions with Applications to Bayesian Inference

被引:0
|
作者
Eugenio Regazzini
Viatcheslav V. Sazonov
机构
[1] Università di Pavia,Dipartimento di Matematica
[2] IAMI-CNR,undefined
[3] Steklov Mathematical Institute,undefined
来源
Acta Applicandae Mathematica | 1999年 / 58卷
关键词
approximation of priors and posteriors; Dirichlet distributions; elicitation of prior beliefs; Lévy metric; Prokhorov metric; random measures;
D O I
暂无
中图分类号
学科分类号
摘要
Within the framework of Bayesian inference, when observations are exchangeable and take values in a finite space X, a prior P is approximated (in the Prokhorov metric) with any precision by explicitly constructed mixtures of Dirichlet distributions. Likewise, the posteriors are approximated with some precision by the posteriors of these mixtures of Dirichlet distributions. Approximations in the uniform metric for distribution functions are also given. These results are applied to obtain a method for eliciting prior beliefs and to approximate both the predictive distribution (in the variational metric) and the posterior distribution function of ∫ψd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde p$$ \end{document} (in the Lévy metric), when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde p$$ \end{document} is a random probability having distribution P.
引用
收藏
页码:247 / 264
页数:17
相关论文
共 50 条