Prediction of magnetocaloric effect using a phenomenological model in (x) La0.6Ca0.4MnO3/(1 − x) La0.6Sr0.4MnO3 composites

被引:0
|
作者
H. Gharsallah
M. Jeddi
M. Bejar
E. Dhahri
E. K. Hlil
机构
[1] Université de Sfax,Laboratoire de Physique Appliquée, Faculté des Sciences
[2] Université de Sfax,Institut Préparatoire aux Études d’Ingénieur de Sfax
[3] CNRS Université J. Fourier,Institut Néel
来源
Applied Physics A | 2019年 / 125卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This research paper presents a theoretical work on the magnetocaloric properties of (SC.4-2) composite obtained by mixing citric-gel La0.6Ca0.4MnO3 (S0C1) and La0.6Sr0.4MnO3 (S1C0), with mole fractions [0.875 (S0C1)/0.125 (S1C0)]. This mixture was then fritted at 900 °C. The magnetization of the composite goes in good agreement with the following relationship M(SC.4-2)=0.865×M(S0C1)+0.135×M(S1C0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(\mathrm{S}\mathrm{C}.4{\text{-}}2)=0.865\times M(\mathrm{S}0\mathrm{C}1)+0.135 \times M(\mathrm{S}1\mathrm{C}0)$$\end{document}, where (0.865, 0.135) are the corresponding weight fractions to mole fractions (0.875, 0.125) of parent compounds [(S0C1) (S1C0)]. Resting upon this equality, the magnetic entropy change and the specific heat of composite were predicted at a constant field and pressure. The variation of the magnetic entropy ΔSM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left|{\Delta S}_{M}\right|$$\end{document} and the heat capacity ΔCP,H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P,H}$$\end{document} as a function of temperature of the two parent compounds (S0C1) and (S1C0), with a phenomenological model, were obtained in our previous research work. The values of the maximum magnetic entropy change ΔSMmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left|\left({\Delta S}_{M}\right)\right|}_{\mathrm{m}\mathrm{a}\mathrm{x}}$$\end{document}, full width at half-maximum δTFWHM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\updelta} T_{\mathrm{F}\mathrm{W}\mathrm{H}\mathrm{M}}$$\end{document} and relative cooling power (RCP), at several magnetic field variations, were determined. In addition to the S0C1 mother compound, the SC.4-2 composite displays the highest value of RCP, providing an estimate of the quantity of the heat transfer between the hot (Thot) and cold (Tcold) ends during one refrigeration cycle. At a later stage, the study of the dependence on temperature of the magnetic entropy of (x) S0C1/(1 − x) S1C0 composites reveals that the optimum composition stands for x = 0.4. Indeed, it gives comparable contributions of two parent compounds, leading to a practically uniform variation of entropy over a wide temperature range.
引用
收藏
相关论文
共 50 条
  • [11] Structural and magnetic ordering in La0.6Ca0.4MnO3
    Das, A
    Chakraborty, KR
    Gupta, SS
    Kulshreshtha, SK
    Paranjpe, SK
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 237 (01) : 41 - 46
  • [12] Hall effect in La0.6Sr0.4MnO3 thin films
    Granada, M
    Maiorov, B
    Sirena, M
    Steren, LB
    Guimpel, J
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : 1836 - 1838
  • [13] Direct and indirect measurement of the magnetocaloric effect in a La0.6Ca0.4MnO3 ceramic perovskite
    Dinesen, AR
    Linderoth, S
    Morup, S
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 253 (1-2) : 28 - 34
  • [14] Dimensionality Dependent Magnetic and Magnetocaloric Response of La0.6Ca0.4MnO3 Manganite
    Anwar, M. S.
    Ahmed, Faheem
    Koo, Bon Heun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (11) : 8745 - 8749
  • [15] Impact of CuO phase on magnetocaloric and magnetotransport properties of La0.6Ca0.4MnO3 ceramic composites
    Nasri, M.
    Khelifi, J.
    Triki, M.
    Dhahri, E.
    Hlil, E. K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 678 : 427 - 433
  • [16] Impact of CuO phase on magnetocaloric and magnetotransport properties of La0.6Ca0.4MnO3 ceramic composites
    Nasri, M.
    Khelifi, J.
    Triki, M.
    Dhahri, E.
    Hlil, E.K.
    Journal of Alloys and Compounds, 2016, 678 : 427 - 433
  • [17] In situ photoemission characterization of the tunneling barrier in La0.6Sr0.4MnO3SrTiO3/La0.6Sr0.4MnO3 tunneling junctions
    Kumigashira, H.
    Hashimoto, R.
    Chikamatsu, A.
    Oshima, M.
    Wadati, H.
    Fujimori, A.
    Lippmaa, M.
    Kawasaki, M.
    Koinuma, H.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 1997 - 1999
  • [18] Coexistence of four resistance states and exchange bias in La0.6Sr0.4MnO3/BiFeO3/La0.6Sr0.4MnO3 multiferroic tunnel junction
    Liu, Y. K.
    Yin, Y. W.
    Dong, S. N.
    Yang, S. W.
    Jiang, T.
    Li, X. G.
    APPLIED PHYSICS LETTERS, 2014, 104 (04)
  • [19] Structural, magnetic and magnetocaloric properties of 0.75La0.6Ca0.4MnO3/0.25La0.6Sr0.4MnO3 nanocomposite manganite
    Jeddi, M.
    Gharsallah, H.
    Bekri, M.
    Dhahri, E.
    Hlil, E. K.
    RSC ADVANCES, 2018, 8 (50): : 28649 - 28659
  • [20] Robust Ti4+ states in SrTiO3 layers of La0.6Sr0.4MnO3/SrTiO3/La0.6Sr0.4MnO3 junctions
    Kumigashira, H
    Chikamatsu, A
    Hashimoto, R
    Oshima, M
    Ohnishi, T
    Lippmaa, M
    Wadati, H
    Fujimori, A
    Ono, K
    Kawasaki, M
    Koinuma, H
    APPLIED PHYSICS LETTERS, 2006, 88 (19)