Turnpike Property for Two-Dimensional Navier–Stokes Equations

被引:0
|
作者
Sebastián Zamorano
机构
[1] Universidad de Santiago de Chile,Departamento de Matemática y Ciencia de la Computación
关键词
Navier–Stokes equations; Optimal control problems; Turnpike property; Asymptotic stability; Oseen equation; Primary 35Q30; Secondary 49J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the turnpike phenomenon arising in the optimal distributed control tracking-type problem for the Navier–Stokes equations. We obtain a positive answer to this property in the case when the control is time-dependent function and also when it is independent of time. In both cases we prove an exponential turnpike property assuming that the stationary optimal state satisfies certain properties of smallness.
引用
收藏
页码:869 / 888
页数:19
相关论文
共 50 条
  • [41] A rigorous treatment of 'experimental' observations for the two-dimensional Navier-Stokes equations
    Robinson, JC
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2008): : 1007 - 1020
  • [42] Bifurcations of a Steady-State Solution to the Two-Dimensional Navier–Stokes Equations
    Zhi-Min Chen
    Communications in Mathematical Physics, 1999, 201 : 117 - 138
  • [43] CHEBYSHEV SPECTRAL APPROXIMATION OF NAVIER-STOKES EQUATIONS IN A TWO-DIMENSIONAL DOMAIN
    MADAY, Y
    METIVET, B
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1987, 21 (01): : 93 - 123
  • [44] Random attractors for the two-dimensional stochastic g-Navier-Stokes equations
    Feng, Xiaoliang
    You, Bo
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2020, 92 (04) : 613 - 626
  • [45] Analyticity of solutions for randomly forced two-dimensional Navier-Stokes equations
    Shirikyan, A
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (04) : 785 - 799
  • [46] Boundary layer problems for the two-dimensional compressible Navier-Stokes equations
    Gong, Shengbo
    Guo, Yan
    Wang, Ya-Guang
    ANALYSIS AND APPLICATIONS, 2016, 14 (01) : 1 - 37
  • [47] Application of finite volume method for solving two-dimensional Navier Stokes equations
    Ni, Jian
    Wei, Xifei
    Journal of Digital Information Management, 2013, 11 (05): : 321 - 326
  • [48] H∞ FEEDBACK BOUNDARY STABILIZATION OF THE TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Dharmatti, Sheetal
    Raymond, Jean-Pierre
    Thevenet, Laetitia
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (06) : 2318 - 2348
  • [49] Some new exact solutions for the two-dimensional Navier-Stokes equations
    Wu, Chiping
    Ji, Zhongzhen
    Zhang, Yongxing
    Hao, Hartzhong
    Jin, Xuan
    PHYSICS LETTERS A, 2007, 371 (5-6) : 438 - 452
  • [50] Stochastic Two-Dimensional Navier–Stokes Equations on Time-Dependent Domains
    Wei Wang
    Jianliang Zhai
    Tusheng Zhang
    Journal of Theoretical Probability, 2022, 35 : 2916 - 2939