Bohr Hamiltonian with Eckart potential for triaxial nuclei

被引:0
|
作者
L. Naderi
H. Hassanabadi
机构
[1] Shahrood University of Technology,Physics Department
关键词
Atomic Nucleus; Harmonic Oscillator; Prolate; Euler Angle; Wigner Function;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the Bohr Hamiltonian has been solved using the Eckart potential for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \beta$\end{document}-part and a harmonic oscillator for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document}-part of the Hamiltonian. The approximate separation of the variables has been possible by choosing the convenient form for the potential \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ V(\beta,\gamma)$\end{document}. Using the Nikiforov-Uvarov method the eigenvalues and eigenfunctions of the eigenequation for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \beta$\end{document}-part have been derived. An expression for the total energy of the levels has been represented.
引用
收藏
相关论文
共 50 条
  • [1] Bohr Hamiltonian with Eckart potential for triaxial nuclei
    Naderi, L.
    Hassanabadi, H.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (05):
  • [2] Bohr Hamiltonian with Davidson potential for triaxial nuclei
    Yigitoglu, I.
    Bonatsos, Dennis
    [J]. PHYSICAL REVIEW C, 2011, 83 (01):
  • [3] Bohr Hamiltonian with screened Kratzer potential for triaxial nuclei
    Omon, Y.
    Ema'a Ema'a, J. M.
    Abiama, P. Ele
    Ben-Bolie, G. H.
    Ateba, P. Owono
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2020, 29 (10):
  • [4] Exactly separable Bohr Hamiltonian with the Morse potential for triaxial nuclei
    Inci, I.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2014, 23 (10)
  • [5] Exactly separable Bohr Hamiltonian with the Killingbeck potential for triaxial nuclei
    Neyazi, H.
    Rajabi, A. A.
    Hassanabadi, H.
    [J]. NUCLEAR PHYSICS A, 2016, 945 : 80 - 88
  • [6] Bohr Hamiltonian with hyperbolic Poschl-Teller potential for triaxial nuclei
    Naderi, L.
    Hassanabadi, H.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (04):
  • [7] Bohr Hamiltonian with multiparameter exponential-type potential for triaxial nuclei
    Marie, Ema'a Ema'a Jean
    Basile, Tchana Mbadjoun
    Zarma, Ali
    Patrice, Ele Abiama
    Hubert, Ben-Bolie Germain
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (10):
  • [8] Bohr Hamiltonian with multiparameter exponential-type potential for triaxial nuclei
    Ema’a Ema’a Jean Marie
    Tchana Mbadjoun Basile
    Ali Zarma
    Ele Abiama Patrice
    Ben-Bolie Germain Hubert
    [J]. The European Physical Journal Plus, 134
  • [9] Bohr Hamiltonian with a finite well for triaxial nuclei
    Inci, I.
    Boztosun, I.
    Gonen, Y. E.
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2012, 39 (08)
  • [10] Bohr Hamiltonian and the energy spectra of the triaxial nuclei
    L. Naderi
    H. Hassanabadi
    [J]. The European Physical Journal Plus, 131