Bohr Hamiltonian and the energy spectra of the triaxial nuclei

被引:0
|
作者
L. Naderi
H. Hassanabadi
机构
[1] University of Shahrood,Physics Department
关键词
Angular Momentum; Harmonic Oscillator; Prolate; Morse Potential; Ground State Band;
D O I
暂无
中图分类号
学科分类号
摘要
A Bohr Hamiltonian, with a potential including a displaced harmonic oscillator plus a Coulomb-like term and a centrifuge term for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \beta$\end{document}-part and a harmonic oscillator centered around \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma= \frac{\pi}{6}$\end{document} for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document}-part, which can be approximately separated, has been solved for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \beta$\end{document}-part and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document}-part. The part related to the collective \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document}-variable has been chosen in such a way that the model describes the triaxial nuclei. The eigenfunctions and eigenvalues of the energy have been obtained. An analytical expression for the total energy spectra is given.
引用
收藏
相关论文
共 50 条
  • [1] Bohr Hamiltonian and the energy spectra of the triaxial nuclei
    Naderi, L.
    Hassanabadi, H.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (01): : 1 - 6
  • [2] Bohr Hamiltonian with a finite well for triaxial nuclei
    Inci, I.
    Boztosun, I.
    Gonen, Y. E.
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2012, 39 (08)
  • [3] Bohr Hamiltonian with Davidson potential for triaxial nuclei
    Yigitoglu, I.
    Bonatsos, Dennis
    [J]. PHYSICAL REVIEW C, 2011, 83 (01):
  • [4] Bohr Hamiltonian with Eckart potential for triaxial nuclei
    L. Naderi
    H. Hassanabadi
    [J]. The European Physical Journal Plus, 131
  • [5] Bohr Hamiltonian with Eckart potential for triaxial nuclei
    Naderi, L.
    Hassanabadi, H.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (05):
  • [6] Solution of the Bohr Hamiltonian for soft triaxial nuclei
    Fortunato, L.
    De Baerdemacker, S.
    Heyde, K.
    [J]. PHYSICAL REVIEW C, 2006, 74 (01):
  • [7] Bohr Hamiltonian with screened Kratzer potential for triaxial nuclei
    Omon, Y.
    Ema'a Ema'a, J. M.
    Abiama, P. Ele
    Ben-Bolie, G. H.
    Ateba, P. Owono
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2020, 29 (10):
  • [8] Shannon entropy and complexity measures for Bohr Hamiltonian with triaxial nuclei
    Amadi, P. O.
    Ikot, A. N.
    Okorie, U. S.
    Obagboye, L. F.
    Rampho, G. J.
    Horchani, R.
    Onyeaju, M. C.
    Alrebdi, H. I.
    Abdel-Aty, A. -H.
    [J]. RESULTS IN PHYSICS, 2022, 39
  • [9] Exactly separable Bohr Hamiltonian with the Morse potential for triaxial nuclei
    Inci, I.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2014, 23 (10)
  • [10] Exactly separable Bohr Hamiltonian with the Killingbeck potential for triaxial nuclei
    Neyazi, H.
    Rajabi, A. A.
    Hassanabadi, H.
    [J]. NUCLEAR PHYSICS A, 2016, 945 : 80 - 88