The Julia Set and the Fast Escaping Set of a Quasiregular Mapping

被引:0
|
作者
Walter Bergweiler
Alastair Fletcher
Daniel A. Nicks
机构
[1] Christian-Albrechts-Universität zu Kiel,Mathematisches Seminar
[2] Northern Illinois University,Department of Mathematical Sciences
[3] University of Nottingham,School of Mathematical Sciences
关键词
Quasiregular mapping; Iteration; Dynamics; Julia set ; Fast escaping set; Primary 37F10; Secondary 30C65; 30D05;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that for quasiregular maps of positive lower order, the Julia set coincides with the boundary of the fast escaping set.
引用
收藏
页码:209 / 218
页数:9
相关论文
共 50 条
  • [31] The Julia set of Henon maps
    Fornæss, JE
    MATHEMATISCHE ANNALEN, 2006, 334 (02) : 457 - 464
  • [32] On the level of Qε(f) in quite fast escaping set and spider's web
    Majee, Soumyadip
    Chatterjee, Subham
    Chakraborty, Gorachand
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (03) : 1335 - 1342
  • [33] New multi-scroll attractors obtained via Julia set mapping
    Atangana, Abdon
    Bouallegue, Ghaith
    Bouallegue, Kais
    CHAOS SOLITONS & FRACTALS, 2020, 134
  • [34] EREMENKO POINTS AND THE STRUCTURE OF THE ESCAPING SET
    Rippon, P. J.
    Stallard, G. M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (05) : 3083 - 3111
  • [35] Rational map has a Cantor Circle Julia set and a Sierpinski Carpet Julia set of degree m
    Al-Shara'a, Iftichar M. T.
    Al-Salami, Hassanein Q.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (07) : 1483 - 1491
  • [36] On the connectivity of the escaping set in the punctured plane
    Vasiliki Evdoridou
    David Martí-Pete
    David J. Sixsmith
    Collectanea Mathematica, 2021, 72 : 109 - 127
  • [37] On the connectivity of the escaping set in the punctured plane
    Evdoridou, Vasiliki
    Marti-Pete, David
    Sixsmith, David J.
    COLLECTANEA MATHEMATICA, 2021, 72 (01) : 109 - 127
  • [38] Fast mapping algorithm for histogram to binary set conversion
    Chen, T
    Chen, LH
    PATTERN RECOGNITION LETTERS, 2000, 21 (10) : 899 - 906
  • [39] Normal families, multiplicity and the branch set of quasiregular maps
    Martio, O
    Srebro, U
    Väisälä, J
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1999, 24 (01) : 231 - 252
  • [40] A transcendental Julia set of dimension 1
    Bishop, Christopher J.
    INVENTIONES MATHEMATICAE, 2018, 212 (02) : 407 - 460