Incremental Classification with Generalized Eigenvalues

被引:0
|
作者
Claudio Cifarelli
Mario R. Guarracino
Onur Seref
Salvatore Cuciniello
Panos M. Pardalos
机构
[1] University of Rome "La Sapienza",
[2] National Research Council,undefined
[3] University of Florida,undefined
来源
Journal of Classification | 2007年 / 24卷
关键词
Support Vector Machine; Generalize Eigenvalue Problem; Support Vector Machine Algorithm; Support Vector Machine Method; Supervise Learning Technique;
D O I
暂无
中图分类号
学科分类号
摘要
Supervised learning techniques are widely accepted methods to analyze data for scientific and real world problems. Most of these problems require fast and continuous acquisition of data, which are to be used in training the learning system. Therefore, maintaining such systems updated may become cumbersome. Various techniques have been devised in the field of machine learning to solve this problem. In this study, we propose an algorithm to reduce the training data to a substantially small subset of the original training data to train a generalized eigenvalue classifier. The proposed method provides a constructive way to understand the influence of new training data on an existing classification function. We show through numerical experiments that this technique prevents the overfitting problem of the earlier generalized eigenvalue classifiers, while promising a comparable performance in classification with respect to the state-of-the-art classification methods.
引用
收藏
页码:205 / 219
页数:14
相关论文
共 50 条
  • [1] Incremental classification with generalized eigenvalues
    Cifarelli, Claudio
    Guarracino, Mario R.
    Seref, Onur
    Cuciniello, Salvatore
    Pardalos, Panos M.
    JOURNAL OF CLASSIFICATION, 2007, 24 (02) : 205 - 219
  • [2] Semi-supervised generalized eigenvalues classification
    Viola, Marco
    Sangiovanni, Mara
    Toraldo, Gerardo
    Guarracino, Mario R.
    ANNALS OF OPERATIONS RESEARCH, 2019, 276 (1-2) : 249 - 266
  • [3] Semi-supervised generalized eigenvalues classification
    Marco Viola
    Mara Sangiovanni
    Gerardo Toraldo
    Mario R. Guarracino
    Annals of Operations Research, 2019, 276 : 249 - 266
  • [4] Classification and Characterization of Gene Expression Data with Generalized Eigenvalues
    Guarracino, M. R.
    Cuciniello, S.
    Pardalos, P. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 141 (03) : 533 - 545
  • [5] Classification and Characterization of Gene Expression Data with Generalized Eigenvalues
    M. R. Guarracino
    S. Cuciniello
    P. M. Pardalos
    Journal of Optimization Theory and Applications, 2009, 141 : 533 - 545
  • [6] Fuzzy proximal support vector classification via generalized eigenvalues
    Jayadeva
    Khemchandani, R
    Chandra, S
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2005, 3776 : 360 - 363
  • [7] Incremental Generalized Discriminative Common Vectors for Image Classification
    Diaz-Chito, Katerine
    Ferri, Francesc J.
    Diaz-Villanueva, Wladimiro
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (08) : 1761 - 1775
  • [8] Multisurface proximal support vector machine classification via generalized eigenvalues
    Mangasarian, OL
    Wild, EW
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (01) : 69 - 74
  • [9] Classification of cancer cell death with spectral dimensionality reduction and generalized eigenvalues
    Guarracino, Mario R.
    Xanthopoulos, Petros
    Pyrgiotakis, Georgios
    Tomaino, Vera
    Moudgil, Brij M.
    Pardalos, Panos M.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2011, 53 (02) : 119 - 125
  • [10] On the eigenvalues of generalized and double generalized stars
    Barioli, F
    Fallat, S
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (04): : 269 - 291