A Latent Transition Analysis Model for Latent-State-Dependent Nonignorable Missingness

被引:0
|
作者
Sonya K. Sterba
机构
[1] Vanderbilt University,Quantitative Methods Program, Department of Psychology and Human Development
来源
Psychometrika | 2016年 / 81卷
关键词
nonignorable missing data; latent transition analysis; missing not at random; shared parameter model; mixture model;
D O I
暂无
中图分类号
学科分类号
摘要
Psychologists often use latent transition analysis (LTA) to investigate state-to-state change in discrete latent constructs involving delinquent or risky behaviors. In this setting, latent-state-dependent nonignorable missingness is a potential concern. For some longitudinal models (e.g., growth models), a large literature has addressed extensions to accommodate nonignorable missingness. In contrast, little research has addressed how to extend the LTA to accommodate nonignorable missingness. Here we present a shared parameter LTA that can reduce bias due to latent-state-dependent nonignorable missingness: a parallel-process missing-not-at-random (MNAR-PP) LTA. The MNAR-PP LTA allows outcome process parameters to be interpreted as in the conventional LTA, which facilitates sensitivity analyses assessing changes in estimates between LTA and MNAR-PP LTA. In a sensitivity analysis for our empirical example, previous and current membership in high-delinquency states predicted adolescents’ membership in missingness states that had high nonresponse probabilities for some or all items. A conventional LTA overestimated the proportion of adolescents ending up in a low-delinquency state, compared to an MNAR-PP LTA.
引用
收藏
页码:506 / 534
页数:28
相关论文
共 50 条
  • [1] A Latent Transition Analysis Model for Latent-State-Dependent Nonignorable Missingness
    Sterba, Sonya K.
    [J]. PSYCHOMETRIKA, 2016, 81 (02) : 506 - 534
  • [2] A Bayesian Latent Variable Selection Model for Nonignorable Missingness
    Du, Han
    Enders, Craig
    Keller, Brian Tinnell
    Bradbury, Thomas N.
    Karney, Benjamin R.
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2022, 57 (2-3) : 478 - 512
  • [3] A LATENT FACTOR MODEL FOR SPATIAL DATA WITH INFORMATIVE MISSINGNESS
    Reich, Brian J.
    Bandyopadhyay, Dipankar
    [J]. ANNALS OF APPLIED STATISTICS, 2010, 4 (01): : 439 - 459
  • [4] Residual Associations in Latent Class and Latent Transition Analysis
    Asparouhov, Tihomir
    Muthen, Bengt
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2015, 22 (02) : 169 - 177
  • [5] A latent autoregressive model for longitudinal binary data subject to informative missingness
    Albert, PS
    Follmann, DA
    Wang, SHA
    Suh, EB
    [J]. BIOMETRICS, 2002, 58 (03) : 631 - 642
  • [6] Modeling longitudinal data with nonignorable dropouts using a latent dropout class model
    Roy, J
    [J]. BIOMETRICS, 2003, 59 (04) : 829 - 836
  • [7] Latent Variable Model for Weight Gain Prevention Data with Informative Intermittent Missingness
    Qin, Li
    Weissfeld, Lisa
    Levine, Michele
    Marcus, Marsha
    Dai, Feng
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2016, 15 (02) : 627 - 642
  • [8] Commentary on latent class, latent profile, and latent transition analysis for characterizing individual differences in learning
    Bray, Bethany C.
    Dziak, John J.
    [J]. LEARNING AND INDIVIDUAL DIFFERENCES, 2018, 66 : 105 - 110
  • [9] A latent transition model with logistic regression
    Chung, Hwan
    Walls, Theodore A.
    Park, Yousung
    [J]. PSYCHOMETRIKA, 2007, 72 (03) : 413 - 435
  • [10] A Latent Transition Model With Logistic Regression
    Hwan Chung
    Theodore A. Walls
    Yousung Park
    [J]. Psychometrika, 2007, 72 : 413 - 435