Boundedness of Operators Related to a Degenerate Schrödinger Semigroup

被引:0
|
作者
E. Harboure
O. Salinas
B. Viviani
机构
[1] CONICET-UNL.,Instituto de Matemática Aplicada del Litoral
[2] CONICET-UNL and Facultad de Ingeniería Química UNL.,Instituto de Matemática Aplicada del Litoral
来源
Potential Analysis | 2022年 / 57卷
关键词
Schrödinger operator; Degenerate; Fractional integrals; Primary 42B20; Secondary 35J10;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we search for boundedness results for operators related to the semigroup generated by the degenerate Schrödinger operator Lu=−1ωdivA⋅∇u+Vu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\mathscr{L}}} u = -\frac {1}{\omega } \text {div} A\cdot \nabla u +V u$\end{document}, where ω is a weight, A is a matrix depending on x and satisfying λω(x)|ξ|2 ≤ A(x)ξ ⋅ ξ ≤Λω(x)|ξ|2 for some positive constants λ, Λ and all x, ξ in ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{d}$\end{document}, assuming further suitable properties on the weight ω and on the non-negative potential V. In particular, we analyze the behaviour of T∗, the maximal semigroup operator, L−α/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\mathscr{L}}}^{-\alpha /2}$\end{document}, the negative powers of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\mathscr{L}}}$\end{document}, and the mixed operators L−α/2Vσ/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\mathscr{L}}}^{-\alpha /2}V^{\sigma /2}$\end{document} with 0 < σ ≤ α on appropriate functions spaces measuring size and regularity. As in the non degenerate case, i.e. ω ≡ 1, we achieve these results by first studying the case V = 0, obtaining also some boundedness properties in this context that we believe are new.
引用
收藏
页码:401 / 431
页数:30
相关论文
共 50 条
  • [41] Boundedness for Riesz transform associated with Schrödinger operators and its commutator on weighted Morrey spaces related to certain nonnegative potentials
    Yu Liu
    Lijuan Wang
    Journal of Inequalities and Applications, 2014
  • [42] Endpoint estimates for commutators of Riesz transforms related to Schrödinger operators
    Yanhui Wang
    Yueshan Wang
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 449 - 458
  • [43] Higher order commutators of Riesz transforms related to Schrödinger operators
    Yuanting Wang
    Yu Liu
    Journal of Inequalities and Applications, 2014
  • [44] Null Controllability of a Degenerate Schrödinger Equation
    Abderrazak Chrifi
    Younes Echarroudi
    Complex Analysis and Operator Theory, 2021, 15
  • [45] Concentration of Eigenfunctions of Schrödinger Operators
    Boris Mityagin
    Petr Siegl
    Joe Viola
    Journal of Fourier Analysis and Applications, 2022, 28
  • [46] Regularity for Eigenfunctions of Schrödinger Operators
    Bernd Ammann
    Catarina Carvalho
    Victor Nistor
    Letters in Mathematical Physics, 2012, 101 : 49 - 84
  • [47] Weighted Norm Inequalities for Area Functions Related to Schrödinger Operators
    L. Tang
    J. Wang
    H. Zhu
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2019, 54 : 38 - 50
  • [48] Schrödinger Operators and the Zeros of Their Eigenfunctions
    Sol Schwartzman
    Communications in Mathematical Physics, 2011, 306 : 187 - 191
  • [49] Perturbations of Magnetic Schrödinger Operators
    M. Măntoiu
    M. Pascu
    Letters in Mathematical Physics, 2000, 54 : 181 - 192
  • [50] Schrödinger Operators on Zigzag Nanotubes
    Evgeny Korotyaev
    Igor Lobanov
    Annales Henri Poincaré, 2007, 8 : 1151 - 1176