Monodromy Approach to the Scaling Limits in Isomonodromy Systems

被引:0
|
作者
A. A. Kapaev
机构
[1] St. Petersburg Department of the Steklov Institute of Mathematics,
[2] RAS,undefined
来源
关键词
scaling limits; isomonodromic deformations; WKB method; spectral curve; modulation equations;
D O I
暂无
中图分类号
学科分类号
摘要
The isomonodromy deformation method is applied to the scaling limits in the linear N × N matrix equations with rational coefficients to obtain the deformation equations for the algebraic curves that describe the local behavior of the reduced versions for the relevant isomonodromy deformation equations. The approach is illustrated by the study of the algebraic curve associated with the n-large asymptotics in the sequence of the biorthogonal polynomials with cubic potentials.
引用
收藏
页码:1691 / 1702
页数:11
相关论文
共 50 条
  • [41] Combinatorial Approach to the Interpolation Method and Scaling Limits in Sparse Random Graphs
    Bayati, Mohsen
    Gamarnik, David
    Tetali, Prasad
    STOC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2010, : 105 - 114
  • [42] Scaling limits and regularity results for a class of Ginzburg-Landau systems
    Jerrard, RL
    Soner, HM
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (04): : 423 - 466
  • [43] Fokker-Planck equations as scaling limits of reversible quantum systems
    Castella, F
    Erdos, L
    Frommlet, F
    Markowich, PA
    JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (3-4) : 543 - 601
  • [44] Spatial limits to mutual information scaling in multi-antenna systems
    Pollock, TS
    Williams, MLY
    Abhayapala, TD
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 389 - 392
  • [45] Scaling limits and regularity results for a class of Ginzburg-Landau systems
    Jerrard, Robert L.
    Soner, Halil Mete
    Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis, 16 (04): : 423 - 466
  • [46] Scaling Limits of Memristor-Based Routers for Asynchronous Neuromorphic Systems
    Chen, Junren
    Yang, Siyao
    Wu, Huaqiang
    Indiveri, Giacomo
    Payvand, Melika
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (03) : 1576 - 1580
  • [47] SCALING APPROACH TO ANISOTROPIC MAGNETIC SYSTEMS STATICS
    RIEDEL, E
    WEGNER, F
    ZEITSCHRIFT FUR PHYSIK, 1969, 225 (03): : 195 - &
  • [48] Scaling of Metabolic Scaling within Physical Limits
    Glazier, Douglas S.
    SYSTEMS, 2014, 2 (04) : 425 - 450
  • [49] Scaling the dynamical systems approach to path planning
    Large, EW
    ISIE '97 - PROCEEDINGS OF THE IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-3, 1997, : SS21 - SS26
  • [50] The sixth Painleve equation as isomonodromy deformation of an irregular system: monodromy data, coalescing eigenvalues, locally holomorphic transcendents and Frobenius manifolds
    Degano, Gabriele
    Guzzetti, Davide
    NONLINEARITY, 2023, 36 (08) : 4110 - 4168