Bounded commutative residuated ℓ-monoids with general comparability and states

被引:0
|
作者
A. Dvurečenskij
J. Rachůnek
机构
[1] Slovak Academy of Sciences,Mathematical Institute
[2] Palacký University,Department of Algebra and Geometry, Faculty of Sciences
来源
Soft Computing | 2006年 / 10卷
关键词
Bounded commutative ; ℓ-monoid; general comparability property; Boolean element; State; State-morphism; Extremal state; filter; Maximal filter; MV-algebra; BL-algebra; 06D35; 06F05; 03G25; 03B50; 28E15;
D O I
暂无
中图分类号
学科分类号
摘要
Bounded commutative Rℓ-monoids are a generalization of MV-algebras as well as of BL-algebras. For such monoids the authors in [DvRa] introduced states, analogues of probability measures. We study Boolean elements and introduce the general comparability property. It entails that the monoids with the property are BL-algebras, and extremal states on Boolean elements can be uniquely extended to extremal states on the monoids. Moreover, the hull-kernel topology of maximal filters is totally disconnected.
引用
收藏
页码:212 / 218
页数:6
相关论文
共 50 条
  • [41] Commutative idempotent residuated lattices
    David Stanovský
    Czechoslovak Mathematical Journal, 2007, 57 : 191 - 200
  • [42] Filters on Commutative Residuated Lattices
    Kondo, Michiro
    INTEGRATED UNCERTAINTY MANAGEMENT AND APPLICATIONS, 2010, 68 : 343 - 347
  • [43] On presentations of commutative monoids
    Rosales, JC
    García-Sánchez, PA
    Urbano-Blanco, JM
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1999, 9 (05) : 539 - 553
  • [44] Partial Commutative Monoids
    Wehrung, Friedrich
    REFINEMENT MONOIDS, EQUIDECOMPOSABILITY TYPES, AND BOOLEAN INVERSE SEMIGROUPS, 2017, 2188 : 23 - 69
  • [45] On morphisms of commutative monoids
    J. I. García García
    M. A. Moreno Frías
    Semigroup Forum, 2012, 84 : 333 - 341
  • [46] Derivations of Commutative Residuated Lattices
    M. Kondo
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 93 - 100
  • [47] On morphisms of commutative monoids
    Garcia Garcia, J. I.
    Moreno Frias, M. A.
    SEMIGROUP FORUM, 2012, 84 (02) : 333 - 341
  • [48] ON COMMUTATIVE KLEENE MONOIDS
    RUPERT, CP
    SEMIGROUP FORUM, 1991, 43 (02) : 163 - 177
  • [49] Correction: Projectivity in (bounded) commutative integral residuated latticesCorrection: Projectivity in (bounded) commutativeP. Aglianò and S. Ugolini
    Paolo Aglianò
    Sara Ugolini
    Algebra universalis, 2025, 86 (1)
  • [50] Derivations of Commutative Residuated Lattices
    Kondo, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 93 - 100