SignalP 5.0 improves signal peptide predictions using deep neural networks

被引:0
|
作者
José Juan Almagro Armenteros
Konstantinos D. Tsirigos
Casper Kaae Sønderby
Thomas Nordahl Petersen
Ole Winther
Søren Brunak
Gunnar von Heijne
Henrik Nielsen
机构
[1] Technical University of Denmark,Department of Bio and Health Informatics
[2] Stockholm University,Department of Biochemistry and Biophysics
[3] Stockholm University,Science for Life Laboratory
[4] Max Planck Institute for Molecular Genetics,Department of Genome Regulation
[5] University of Copenhagen,Bioinformatics Centre, Department of Biology
[6] Technical University of Denmark,National Food Institute
[7] Technical University of Denmark,Department of Applied Mathematics and Computer Science
[8] University of Copenhagen,Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences
来源
Nature Biotechnology | 2019年 / 37卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Signal peptides (SPs) are short amino acid sequences in the amino terminus of many newly synthesized proteins that target proteins into, or across, membranes. Bioinformatic tools can predict SPs from amino acid sequences, but most cannot distinguish between various types of signal peptides. We present a deep neural network-based approach that improves SP prediction across all domains of life and distinguishes between three types of prokaryotic SPs.
引用
收藏
页码:420 / 423
页数:3
相关论文
共 50 条
  • [1] SignalP 5.0 improves signal peptide predictions using deep neural networks
    Armenteros, Jose Juan Almagro
    Tsirigos, Konstantinos D.
    Sonderby, Casper Kaae
    Petersen, Thomas Nordahl
    Winther, Ole
    Brunak, Soren
    von Heijne, Gunnar
    Nielsen, Henrik
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (04) : 420 - +
  • [2] Bond order predictions using deep neural networks
    Magedov, Sergey
    Koh, Christopher
    Malone, Walter
    Lubbers, Nicholas
    Nebgen, Benjamin
    [J]. JOURNAL OF APPLIED PHYSICS, 2021, 129 (06)
  • [3] Vehicle's Steering Signal Predictions Using Neural Networks
    Demcenko, A.
    Tamosiunaite, M.
    Vidugiriene, A.
    Saudargiene, A.
    [J]. 2008 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1-3, 2008, : 338 - +
  • [4] Uncertainty quantification of spectral predictions using deep neural networks
    Verma, Sneha
    Aznan, Nik Khadijah Nik
    Garside, Kathryn
    Penfold, Thomas J.
    [J]. CHEMICAL COMMUNICATIONS, 2023, 59 (46) : 7100 - 7103
  • [5] Predictions of turbulent shear flows using deep neural networks
    Srinivasan, P. A.
    Guastoni, L.
    Azizpour, H.
    Schlatter, P.
    Vinuesa, R.
    [J]. PHYSICAL REVIEW FLUIDS, 2019, 4 (05):
  • [6] Predictions of Wave Overtopping Using Deep Learning Neural Networks
    Tsai, Yu-Ting
    Tsai, Ching-Piao
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (10)
  • [7] USING DEEP LEARNING NEURAL NETWORKS FOR INVERSE PROTEIN FOLDING PREDICTIONS
    La Fleur, Alyssa
    Almaw, Tersa
    Ojennus, Deanna
    Jones, Kent
    [J]. PROTEIN SCIENCE, 2019, 28 : 139 - 139
  • [8] RF Signal Transformation and Classification using Deep Neural Networks
    Khalid, Umar
    Karim, Nazmul
    Rahnavard, Nazanin
    [J]. BIG DATA IV: LEARNING, ANALYTICS, AND APPLICATIONS, 2022, 12097
  • [9] Seismic Signal Denoising and Decomposition Using Deep Neural Networks
    Zhu, Weiqiang
    Mousavi, S. Mostafa
    Beroza, Gregory C.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (11): : 9476 - 9488
  • [10] Prediction of signal peptide in proteins with neural networks
    Fariselli, P
    Finocchiaro, G
    Casadio, R
    [J]. NEURAL NETS, 2003, 2859 : 237 - 244