Effect of LiF‑introduced on electrochemical properties of carbon coated silicon suboxide anode material for lithium-ion batteries

被引:0
|
作者
Zhenyuan Tang
Zhengyu Zhang
Jiani Wu
Qian Luo
Lifang Lan
Jun Li
机构
[1] Guangdong University of Technology,School of Chemical Engineering and Light Industry
来源
Ionics | 2023年 / 29卷
关键词
Lithium-ion batteries; Silicon suboxide anode; Lithium fluoride; SEI layer; Electrochemical properties;
D O I
暂无
中图分类号
学科分类号
摘要
Though silicon suboxide (SiOx, 0 < x < 2) has been considered a new generation of anode material for lithium-ion batteries, the large volume expansion and intrinsic conductivity hinder its commercial applications. In this work, silicon dioxide (SiO2) was prepared via tetraethyl orthosilicate (TEOS) hydrolyzed, and lithium fluoride (LiF) was introduced in situ, and then SiO2/LiF was covered with pyrolyzed sucrose to obtain SiOx/LiF@C. Large elastic modulus, low solubility in a carbonate solution, and high chemical stability LiF was designed to induce the formation of a stable solid-electrolyte interface (SEI) layer on the electrode surface. The more stable interface minimizes the continuous growth of the SEI layer, thereby reducing the resistance and the irreversible decay of capacity. Compared with SiOx@C-3, the SiOx/LiF@C-3 anode displays better electrochemical performance, especially cycle performance at high current density. Benefiting from the cooperation of amorphous carbon coating and stable SEI layer, SiOx/LiF@C-3 activated by low current maintains a specific capacity of 504.2 mAh g−1 and a capacity retention rate of 96% after 300 cycles at a current density of 0.3 A g−1. The great potential of LiF‑introduced for silicon suboxide anode is demonstrated.
引用
收藏
页码:3483 / 3492
页数:9
相关论文
共 50 条
  • [31] Electrochemical properties of Li2ZrO3-coated silicon/graphite/carbon composite as anode material for lithium ion batteries
    Li, Ming-Qi
    Qu, Mei-Zhen
    He, Xiao-Ying
    Yu, Zuo-Long
    JOURNAL OF POWER SOURCES, 2009, 188 (02) : 546 - 551
  • [32] Binary Carbon Modification Promoting the Electrochemical Performance of Silicon Anode for Lithium-Ion Batteries
    Feng, Yaxin
    Zhang, Yang
    Song, Ye
    Li, Pingyun
    Liu, Jie
    CHEMISTRYSELECT, 2023, 8 (06):
  • [33] Preparation and Properties of Ag-Coated MnO as an Anode Material for Lithium-Ion Batteries
    Ding, Peng
    Yin, Muyi
    Chen, Yulin
    Guan, Fei
    Liu, Zhongfeng
    Cui, Hang
    INTERNATIONAL CONFERENCE ON FRONTIERS OF ENERGY, ENVIRONMENTAL MATERIALS AND CIVIL ENGINEERING (FEEMCE 2013), 2013, : 649 - 654
  • [34] Silicon/carbon nanotubes anode for lithium-ion batteries: Synthesis, interface and electrochemical performance
    Guo, Xiaobei
    Yang, Zhongtang
    Wang, Wei
    Zhang, Yi
    Yu, Nengfei
    Lu, Chunhua
    SURFACES AND INTERFACES, 2024, 48
  • [35] Electrochemical properties of the carbon-coated lithium vanadium oxide anode for lithium ion batteries
    Lee, SangMin
    Kim, Hyung Sun
    Seong, Tae-Yeon
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (06) : 3136 - 3140
  • [36] Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithium-ion Batteries
    Jo, Yoon Ji
    Lee, Jong Dae
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2018, 56 (03): : 320 - 326
  • [37] A Hollow Silicon Nanosphere/Carbon Nanotube Composite as an Anode Material for Lithium-Ion Batteries
    Tang, Hao
    Xu, Yuanyuan
    Liu, Li
    Zhao, Decheng
    Zhang, Zhen
    Wu, Yutong
    Zhang, Yi
    Liu, Xiang
    Wang, Zhoulu
    COATINGS, 2022, 12 (10)
  • [38] High performance carbon-coated lithium zinc titanate as an anode material for lithium-ion batteries
    Wang, Lijuan
    Chen, Baokuan
    Meng, Zhaohui
    Luo, Baomin
    Wang, Xiaojie
    Zhao, Yingying
    ELECTROCHIMICA ACTA, 2016, 188 : 135 - 144
  • [39] Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries
    Sun Xue-Mei
    Gao Li-Jun
    ACTA PHYSICO-CHIMICA SINICA, 2015, 31 (08) : 1521 - 1526
  • [40] Electrochemical characterization of carbon coated bundle-type silicon nanorod for anode material in lithium ion secondary batteries
    Halim, Martin
    Kim, Jung Sub
    Choi, Jeong-Gil
    Lee, Joong Kee
    APPLIED SURFACE SCIENCE, 2015, 334 : 115 - 122